BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27168484)

  • 1. Triazine-Carbon Nanotubes: New Platforms for the Design of Flavin Receptors.
    Lucío MI; Pichler F; Ramírez JR; de la Hoz A; Sánchez-Migallón A; Hadad C; Quintana M; Giulani A; Bracamonte MV; Fierro JL; Tavagnacco C; Herrero MA; Prato M; Vázquez E
    Chemistry; 2016 Jun; 22(26):8879-88. PubMed ID: 27168484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid microwave synthesis of chitosan modified carbon nanotube composites.
    Yu JG; Huang KL; Tang JC; Yang Q; Huang DS
    Int J Biol Macromol; 2009 May; 44(4):316-9. PubMed ID: 19022285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of hydroxylated single-walled carbon nanotubes to two hemoproteins, hemoglobin and myoglobin.
    Wang YQ; Zhang HM; Cao J
    J Photochem Photobiol B; 2014 Dec; 141():26-35. PubMed ID: 25313539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence quenching studies on the interaction of riboflavin with tryptophan and its analytical application.
    Li P; Liu S; Wang X; Liu Z; He Y
    Luminescence; 2013; 28(6):910-4. PubMed ID: 23255457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A supramolecular approach for the facile solubilization and separation of covalently functionalized single-walled carbon nanotubes.
    Bosch S; Zeininger L; Hauke F; Hirsch A
    Chemistry; 2014 Feb; 20(9):2537-41. PubMed ID: 24481923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of multi-walled carbon nanotubes by Diels-Alder and Sandmeyer reactions.
    Gergely A; Telegdi J; Mészáros E; Pászti Z; Tárkanyi G; Kármán FH; Kálmán E
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2795-807. PubMed ID: 17685300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of oscillatory surface reactions of riboflavin, trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy.
    Sen F; Boghossian AA; Sen S; Ulissi ZW; Zhang J; Strano MS
    ACS Nano; 2012 Dec; 6(12):10632-45. PubMed ID: 23075271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman, EELS and XPS studies of maghemite decorated multi-walled carbon nanotubes.
    Zhang W; Stolojan V; Silva SR; Wu CW
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():715-8. PubMed ID: 24374884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grafting chitosan and polyHEMA on carbon nanotubes surfaces: "grafting to" and "grafting from" methods.
    Mahmoodian H; Moradi O; Shariatzadeh B
    Int J Biol Macromol; 2014 Feb; 63():92-7. PubMed ID: 24183808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide.
    Ju SY; Doll J; Sharma I; Papadimitrakopoulos F
    Nat Nanotechnol; 2008 Jun; 3(6):356-62. PubMed ID: 18654547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melamine sensing through riboflavin stabilized gold nanoparticles.
    Roy B; Saha A; Nandi AK
    Analyst; 2011 Jan; 136(1):67-70. PubMed ID: 20944845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids.
    Zhang H; Cui H
    Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncovalent functionalization of single-walled carbon nanotubes by indocyanine green: Potential nanocomplexes for photothermal therapy.
    Zheng X; Zhou F
    J Xray Sci Technol; 2011; 19(2):275-84. PubMed ID: 21606588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical band gap modification of single-walled carbon nanotubes by encapsulated fullerenes.
    Okazaki T; Okubo S; Nakanishi T; Joung SK; Saito T; Otani M; Okada S; Bandow S; Iijima S
    J Am Chem Soc; 2008 Mar; 130(12):4122-8. PubMed ID: 18311979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrophoretic manipulation of fluorescing single-walled carbon nanotubes.
    Mureau N; Mendoza E; Silva SR
    Electrophoresis; 2007 May; 28(10):1495-8. PubMed ID: 17427259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis.
    Allen BL; Kichambare PD; Gou P; Vlasova II; Kapralov AA; Konduru N; Kagan VE; Star A
    Nano Lett; 2008 Nov; 8(11):3899-903. PubMed ID: 18954125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-covalent biofunctionalization of single-walled carbon nanotubes via biotin attachment by π-stacking interactions and pyrrole polymerization.
    Haddad R; Cosnier S; Maaref A; Holzinger M
    Analyst; 2009 Dec; 134(12):2412-8. PubMed ID: 19918610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersion of multi-walled carbon nanotubes in an aqueous medium by water-dispersible conjugated polymer nanoparticles.
    Baykal B; Ibrahimova V; Er G; Bengü E; Tuncel D
    Chem Commun (Camb); 2010 Sep; 46(36):6762-4. PubMed ID: 20717562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Characterization of the Paclitaxel loaded Riboflavin and Thiamine Conjugated Carbon Nanotubes for Cancer Treatment.
    Singh S; Mehra NK; Jain NK
    Pharm Res; 2016 Jul; 33(7):1769-81. PubMed ID: 27091032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allyloxyporphyrin-functionalized multiwalled carbon nanotubes: synthesis by radical polymerization and enhanced optical-limiting properties.
    Wang A; Fang Y; Yu W; Long L; Song Y; Zhao W; Cifuentes MP; Humphrey MG; Zhang C
    Chem Asian J; 2014 Feb; 9(2):639-48. PubMed ID: 24259509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.