These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2716851)

  • 61. Coordinating the initial steps of base excision repair. Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex.
    Fitzgerald ME; Drohat AC
    J Biol Chem; 2008 Nov; 283(47):32680-90. PubMed ID: 18805789
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition.
    Maiti A; Morgan MT; Pozharski E; Drohat AC
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8890-5. PubMed ID: 18587051
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterization of Dnmt3b:thymine-DNA glycosylase interaction and stimulation of thymine glycosylase-mediated repair by DNA methyltransferase(s) and RNA.
    Boland MJ; Christman JK
    J Mol Biol; 2008 Jun; 379(3):492-504. PubMed ID: 18452947
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Base excision repair, aging and health span.
    Xu G; Herzig M; Rotrekl V; Walter CA
    Mech Ageing Dev; 2008; 129(7-8):366-82. PubMed ID: 18423806
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Excision of 5-halogenated uracils by human thymine DNA glycosylase. Robust activity for DNA contexts other than CpG.
    Morgan MT; Bennett MT; Drohat AC
    J Biol Chem; 2007 Sep; 282(38):27578-86. PubMed ID: 17602166
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Human thymine DNA glycosylase (TDG) and methyl-CpG-binding protein 4 (MBD4) excise thymine glycol (Tg) from a Tg:G mispair.
    Yoon JH; Iwai S; O'Connor TR; Pfeifer GP
    Nucleic Acids Res; 2003 Sep; 31(18):5399-404. PubMed ID: 12954776
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Initiation of strand incision at G:T and O(6)-methylguanine:T base mismatches in DNA by human cell extracts.
    Lari SU; Day RS; Dobler K; Paterson MC
    Nucleic Acids Res; 2001 Jun; 29(11):2409-17. PubMed ID: 11376160
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An unexpectedly high excision capacity for mispaired 5-hydroxymethyluracil in human cell extracts.
    Rusmintratip V; Sowers LC
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14183-7. PubMed ID: 11121024
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Growth phase-dependent regulation of Vsr endonuclease may contribute to 5-methylcytosine mutational hot spots in Escherichia coli.
    Macintyre G; Pitsikas P; Cupples CG
    J Bacteriol; 1999 Jul; 181(14):4435-6. PubMed ID: 10400606
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Recognition of DNA alterations by the mismatch repair system.
    Marra G; Schär P
    Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):1-13. PubMed ID: 9931291
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells. Competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches.
    Bill CA; Duran WA; Miselis NR; Nickoloff JA
    Genetics; 1998 Aug; 149(4):1935-43. PubMed ID: 9691048
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biased short tract repair of palindromic loop mismatches in mammalian cells.
    Taghian DG; Hough H; Nickoloff JA
    Genetics; 1998 Mar; 148(3):1257-68. PubMed ID: 9539440
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Oxidized, deaminated cytosines are a source of C --> T transitions in vivo.
    Kreutzer DA; Essigmann JM
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3578-82. PubMed ID: 9520408
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mismatch repair by efficient nick-directed, and less efficient mismatch-specific, mechanisms in homologous recombination intermediates in Chinese hamster ovary cells.
    Miller EM; Hough HL; Cho JW; Nickoloff JA
    Genetics; 1997 Oct; 147(2):743-53. PubMed ID: 9335609
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Investigation of the mechanisms of DNA binding of the human G/T glycosylase using designed inhibitors.
    Schärer OD; Kawate T; Gallinari P; Jiricny J; Verdine GL
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4878-83. PubMed ID: 9144158
    [TBL] [Abstract][Full Text] [Related]  

  • 76. DNA-substrate sequence specificity of human G:T mismatch repair activity.
    Sibghat-Ullah ; Day RS
    Nucleic Acids Res; 1993 Mar; 21(5):1281-7. PubMed ID: 8464712
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biology of DNA restriction.
    Bickle TA; Krüger DH
    Microbiol Rev; 1993 Jun; 57(2):434-50. PubMed ID: 8336674
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enzymic removal of 5-methylcytosine from DNA by a human DNA-glycosylase.
    Vairapandi M; Duker NJ
    Nucleic Acids Res; 1993 Nov; 21(23):5323-7. PubMed ID: 8265344
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Patch length of localized repair events: role of DNA polymerase I in mutY-dependent mismatch repair.
    Radicella JP; Clark EA; Chen S; Fox MS
    J Bacteriol; 1993 Dec; 175(23):7732-6. PubMed ID: 8244947
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The rates of G:C-->T:A and G:C-->C:G transversions at CpG dinucleotides in the human factor IX gene.
    Ketterling RP; Vielhaber E; Sommer SS
    Am J Hum Genet; 1994 May; 54(5):831-5. PubMed ID: 8178822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.