BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27169138)

  • 1. Space-Frequency Detail-Preserving Construction of Neonatal Brain Atlases.
    Zhang Y; Shi F; Yap PT; Shen D
    Med Image Comput Comput Assist Interv; 2015 Oct; 9350():255-262. PubMed ID: 27169138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detail-preserving construction of neonatal brain atlases in space-frequency domain.
    Zhang Y; Shi F; Yap PT; Shen D
    Hum Brain Mapp; 2016 Jun; 37(6):2133-50. PubMed ID: 26987787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistent Spatial-Temporal Longitudinal Atlas Construction for Developing Infant Brains.
    Zhang Y; Shi F; Wu G; Wang L; Yap PT; Shen D
    IEEE Trans Med Imaging; 2016 Dec; 35(12):2568-2577. PubMed ID: 27392345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of Neonatal Diffusion Atlases via Spatio-Angular Consistency.
    Saghafi B; Chen G; Shi F; Yap PT; Shen D
    Patch Based Tech Med Imaging (2016); 2016 Oct; 9993():9-16. PubMed ID: 28070568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atlas construction via dictionary learning and group sparsity.
    Shi F; Wang L; Wu G; Zhang Y; Liu M; Gilmore JH; Lin W; Shen D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):247-55. PubMed ID: 23285558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal atlas construction using sparse representation.
    Shi F; Wang L; Wu G; Li G; Gilmore JH; Lin W; Shen D
    Hum Brain Mapp; 2014 Sep; 35(9):4663-77. PubMed ID: 24638883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-angular consistent construction of neonatal diffusion MRI atlases.
    Saghafi B; Kim J; Chen G; Shi F; Lin W; Yap PT; Shen D
    Hum Brain Mapp; 2017 Jun; 38(6):3175-3189. PubMed ID: 28345171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of Longitudinally Consistent 4D Infant Cerebellum Atlases Based on Deep Learning.
    Chen L; Wu Z; Hu D; Pei Y; Zhao F; Sun Y; Wang Y; Lin W; Wang L; Li G;
    Med Image Comput Comput Assist Interv; 2021; 12904():139-149. PubMed ID: 35128548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CONSTRUCTION OF SPATIOTEMPORAL NEONATAL CORTICAL SURFACE ATLASES USING A LARGE-SCALE DATASET.
    Wu Z; Li G; Wang L; Lin W; Gilmore JH; Shen D
    Proc IEEE Int Symp Biomed Imaging; 2018 Apr; 2018():1056-1059. PubMed ID: 30416672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Atlas construction from a heterogeneous brain MR image collection.
    Xie Y; Ho J; Vemuri BC
    IEEE Trans Med Imaging; 2013 Mar; 32(3):628-35. PubMed ID: 23335665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of 4D infant cortical surface atlases with sharp folding patterns via spherical patch-based group-wise sparse representation.
    Wu Z; Wang L; Lin W; Gilmore JH; Li G; Shen D
    Hum Brain Mapp; 2019 Sep; 40(13):3860-3880. PubMed ID: 31115143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph-Constrained Sparse Construction of Longitudinal Diffusion-Weighted Infant Atlases.
    Kim J; Chen G; Lin W; Yap PT; Shen D
    Med Image Comput Comput Assist Interv; 2017 Sep; 10433():49-56. PubMed ID: 29568823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction.
    Ballanger B; Tremblay L; Sgambato-Faure V; Beaudoin-Gobert M; Lavenne F; Le Bars D; Costes N
    Neuroimage; 2013 Aug; 77():26-43. PubMed ID: 23537938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of 4D high-definition cortical surface atlases of infants: Methods and applications.
    Li G; Wang L; Shi F; Gilmore JH; Lin W; Shen D
    Med Image Anal; 2015 Oct; 25(1):22-36. PubMed ID: 25980388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning Spatiotemporal Probabilistic Atlas of Fetal Brains with Anatomically Constrained Registration Network.
    Pei Y; Chen L; Zhao F; Wu Z; Zhong T; Wang Y; Chen C; Wang L; Zhang H; Wang L; Li G
    Med Image Comput Comput Assist Interv; 2021; 12907():239-248. PubMed ID: 35128549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mindboggle: automated brain labeling with multiple atlases.
    Klein A; Mensh B; Ghosh S; Tourville J; Hirsch J
    BMC Med Imaging; 2005 Oct; 5():7. PubMed ID: 16202176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain templates and atlases.
    Evans AC; Janke AL; Collins DL; Baillet S
    Neuroimage; 2012 Aug; 62(2):911-22. PubMed ID: 22248580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NEONATAL BRAIN MRI SEGMENTATION BY BUILDING MULTI-REGION-MULTI-REFERENCE ATLASES.
    Shi F; Yap PT; Fan Y; Gilmore JH; Lin W; Shen D
    Proc IEEE Int Symp Biomed Imaging; 2010 Apr; 2010():964-967. PubMed ID: 20634926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.