BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27169228)

  • 41. Identification and characterization of cucumber microRNAs in response to Pseudoperonospora cubensis infection.
    Jin W; Wu F
    Gene; 2015 Sep; 569(2):225-32. PubMed ID: 26071186
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber.
    Berg JA; Appiano M; Santillán Martínez M; Hermans FW; Vriezen WH; Visser RG; Bai Y; Schouten HJ
    BMC Plant Biol; 2015 Oct; 15():243. PubMed ID: 26453551
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of Airborne Sporangia of
    Bello JC; Sakalidis ML; Perla DE; Hausbeck MK
    Plant Dis; 2021 May; 105(5):1373-1381. PubMed ID: 33174797
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relationship between Loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait Loci mapping.
    Perchepied L; Bardin M; Dogimont C; Pitrat M
    Phytopathology; 2005 May; 95(5):556-65. PubMed ID: 18943322
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control of downy mildew (Pseudoperonospora cubensis) of greenhouse grown cucumbers with alternative biological agents.
    Scherf A; Schuster C; Marx P; Gärber U; Konstantinidou-Doltsinis S; Schmitt A
    Commun Agric Appl Biol Sci; 2010; 75(4):541-54. PubMed ID: 21534461
    [TBL] [Abstract][Full Text] [Related]  

  • 46. mRNA-Seq analysis of the Pseudoperonospora cubensis transcriptome during cucumber (Cucumis sativus L.) infection.
    Savory EA; Adhikari BN; Hamilton JP; Vaillancourt B; Buell CR; Day B
    PLoS One; 2012; 7(4):e35796. PubMed ID: 22545137
    [TBL] [Abstract][Full Text] [Related]  

  • 47. QTL for horticulturally important traits associated with pleiotropic andromonoecy and carpel number loci, and a paracentric inversion in cucumber.
    Pan Y; Wen C; Han Y; Wang Y; Li Y; Li S; Cheng X; Weng Y
    Theor Appl Genet; 2020 Jul; 133(7):2271-2290. PubMed ID: 32306094
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of QTL DM4.1 for Downy Mildew Resistance in Cucumber Reveals Multiple subQTL: A Novel
    Berg JA; Hermans FWK; Beenders F; Lou L; Vriezen WH; Visser RGF; Bai Y; Schouten HJ
    Front Plant Sci; 2020; 11():569876. PubMed ID: 33193500
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of Novel Loci and Candidate Genes for Resistance to Powdery Mildew in a Resequenced Cucumber Germplasm.
    Liu X; Gu X; Lu H; Liu P; Miao H; Bai Y; Zhang S
    Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33923788
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resistance mechanism to carboxylic acid amide fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis.
    Blum M; Waldner M; Olaya G; Cohen Y; Gisi U; Sierotzki H
    Pest Manag Sci; 2011 Oct; 67(10):1211-4. PubMed ID: 21780281
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alternative Splicing in the Obligate Biotrophic Oomycete Pathogen Pseudoperonospora cubensis.
    Burkhardt A; Buchanan A; Cumbie JS; Savory EA; Chang JH; Day B
    Mol Plant Microbe Interact; 2015 Mar; 28(3):298-309. PubMed ID: 25372122
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Duration of Downy Mildew Control Achieved with Fungicides on Cucumber Under Florida Field Conditions.
    Shirley AM; Vallad GE; Dufault N; Raid R; Quesada-Ocampo L
    Plant Dis; 2022 Apr; 106(4):1167-1174. PubMed ID: 34546773
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative proteomic analysis provides insights into the complex responses to Pseudoperonospora cubensis infection of cucumber (Cucumis sativus L.).
    Zhang P; Zhu Y; Luo X; Zhou S
    Sci Rep; 2019 Jul; 9(1):9433. PubMed ID: 31263111
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Resistance Risk Assessment for the New OSBP Inhibitor Y18501 in
    Xue Z; Wang B; Li C; Yang H; Gao X; Sun M; Huang Z; Miao J; Liu X
    J Agric Food Chem; 2023 Mar; 71(11):4510-4520. PubMed ID: 36898018
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of Target Enrichment Sequencing for Population Genetic Analyses of the Obligate Plant Pathogens
    Bello JC; Hausbeck MK; Sakalidis ML
    Mol Plant Microbe Interact; 2021 Oct; 34(10):1103-1118. PubMed ID: 34227836
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Resurgence of Cucurbit Downy Mildew in the United States: A Watershed Event for Research and Extension.
    Holmes GJ; Ojiambo PS; Hausbeck MK; Quesada-Ocampo L; Keinath AP
    Plant Dis; 2015 Apr; 99(4):428-441. PubMed ID: 30699547
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Cucurbit Host, Production Region, and Season on the Population Structure of
    Shirley AM; Vallad GE; Quesada-Ocampo L; Dufault N; Raid R
    Plant Dis; 2024 Feb; 108(2):442-450. PubMed ID: 37642548
    [No Abstract]   [Full Text] [Related]  

  • 58. Elucidation of the molecular responses of a cucumber segment substitution line carrying Pm5.1 and its recurrent parent triggered by powdery mildew by comparative transcriptome profiling.
    Xu Q; Xu X; Shi Y; Qi X; Chen X
    BMC Genomics; 2017 Jan; 18(1):21. PubMed ID: 28056792
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Virulence Structure Within Populations of Pseudoperonospora cubensis in the United States.
    Thomas A; Carbone I; Lebeda A; Ojiambo PS
    Phytopathology; 2017 Jun; 107(6):777-785. PubMed ID: 28402210
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Host Preference of Mating Type in Pseudoperonospora cubensis, the Downy Mildew Causal Agent of Cucurbits.
    Cohen Y; Rubin AE; Galperin M
    Plant Dis; 2013 Feb; 97(2):292. PubMed ID: 30722343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.