BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27169334)

  • 1. Radical Formation Initiates Solvent-Dependent Unfolding and β-sheet Formation in a Model Helical Peptide.
    Owen MC; Strodel B; Csizmadia IG; Viskolcz B
    J Phys Chem B; 2016 Jun; 120(22):4878-89. PubMed ID: 27169334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation study of association in trifluoroethanol/water mixtures.
    Jalili S; Akhavan M
    J Comput Chem; 2010 Jan; 31(2):286-94. PubMed ID: 19475633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental polarity induces conformational transitions in a helical peptide sequence from bacteriophage T4 lysozyme and its tandem duplicate: a molecular dynamics simulation study.
    Kaur H; Sasidhar YU
    J Mol Model; 2015 Apr; 21(4):88. PubMed ID: 25773700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding.
    Kentsis A; Sosnick TR
    Biochemistry; 1998 Oct; 37(41):14613-22. PubMed ID: 9772190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water.
    Luo P; Baldwin RL
    Biochemistry; 1997 Jul; 36(27):8413-21. PubMed ID: 9204889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of TFE on the Helical Content of AK17 and HAL-1 Peptides: Theoretical Insights into the Mechanism of Helix Stabilization.
    Vymětal J; Bednárová L; Vondrášek J
    J Phys Chem B; 2016 Feb; 120(6):1048-59. PubMed ID: 26786280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study.
    Roccatano D; Colombo G; Fioroni M; Mark AE
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12179-84. PubMed ID: 12196631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of Trifluoroethanol Interactions with Trp-Cage in Trifluoroethanol-Water at 298 K through Molecular Dynamics Simulations and Intermolecular Nuclear Overhauser Effects.
    Gerig JT
    J Phys Chem B; 2019 Apr; 123(15):3248-3258. PubMed ID: 30916962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a molecular dynamics force field for simulations of 40% trifluoroethanol-water.
    Gerig JT
    J Phys Chem B; 2014 Feb; 118(6):1471-80. PubMed ID: 24460479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
    Ghosh T; Garde S; García AE
    Biophys J; 2003 Nov; 85(5):3187-93. PubMed ID: 14581218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-hairpin formation in aqueous solution and in the presence of trifluoroethanol: a (1)H and (13)C nuclear magnetic resonance conformational study of designed peptides.
    Santiveri CM; Pantoja-Uceda D; Rico M; Jiménez MA
    Biopolymers; 2005 Oct; 79(3):150-62. PubMed ID: 16078190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of complete hydrophobic coating of bombesin by trifluoroethanol in aqueous solution: an NMR spectroscopic and molecular dynamics study.
    Díaz MD; Fioroni M; Burger K; Berger S
    Chemistry; 2002 Apr; 8(7):1663-9. PubMed ID: 11933094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational polymorphism of the amyloidogenic peptide homologous to residues 113-127 of the prion protein.
    Satheeshkumar KS; Jayakumar R
    Biophys J; 2003 Jul; 85(1):473-83. PubMed ID: 12829502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trifluoroethanol-induced conformational change of tetrameric and monomeric soybean agglutinin: role of structural organization and implication for protein folding and stability.
    Molla AR; Mandal DK
    Biochimie; 2013 Feb; 95(2):204-14. PubMed ID: 23022144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicted and trifluoroethanol-induced alpha-helicity of polypeptides.
    Luidens MK; Figge J; Breese K; Vajda S
    Biopolymers; 1996 Sep; 39(3):367-76. PubMed ID: 8756516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of the stability of a 22-residue alpha-helix in water and 30% trifluoroethanol.
    Van Buuren AR; Berendsen HJ
    Biopolymers; 1993 Aug; 33(8):1159-66. PubMed ID: 8364151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trifluoroethanol effects on helix propensity and electrostatic interactions in the helical peptide from ribonuclease T1.
    Myers JK; Pace CN; Scholtz JM
    Protein Sci; 1998 Feb; 7(2):383-8. PubMed ID: 9521115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further efforts toward a molecular dynamics force field for simulations of peptides in 40% trifluoroethanol-water.
    Gerig JT
    J Phys Chem B; 2015 Apr; 119(16):5163-75. PubMed ID: 25806670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detailed microscopic unfolding pathways of an α-helix and a β-hairpin: direct observation and molecular dynamics.
    Jas GS; Hegefeld WA; Middaugh CR; Johnson CK; Kuczera K
    J Phys Chem B; 2014 Jul; 118(26):7233-46. PubMed ID: 24897620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of the closing of individual hydrogen bonds during TFE-induced helix formation in a peptide.
    Jaravine VA; Alexandrescu AT; Grzesiek S
    Protein Sci; 2001 May; 10(5):943-50. PubMed ID: 11316874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.