These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
959 related articles for article (PubMed ID: 27169462)
1. Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. Colomer C; Llorens R; Noé E; Alcañiz M J Neuroeng Rehabil; 2016 May; 13(1):45. PubMed ID: 27169462 [TBL] [Abstract][Full Text] [Related]
2. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Rong W; Tong KY; Hu XL; Ho SK Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757 [TBL] [Abstract][Full Text] [Related]
3. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study. Fluet GG; Patel J; Qiu Q; Yarossi M; Massood S; Adamovich SV; Tunik E; Merians AS Disabil Rehabil; 2017 Jul; 39(15):1524-1531. PubMed ID: 27669997 [TBL] [Abstract][Full Text] [Related]
4. Effectiveness of mixed reality-based rehabilitation on hands and fingers by individual finger-movement tracking in patients with stroke. Ham Y; Yang DS; Choi Y; Shin JH J Neuroeng Rehabil; 2024 Aug; 21(1):140. PubMed ID: 39127667 [TBL] [Abstract][Full Text] [Related]
5. Effect of task-oriented training assisted by force feedback hand rehabilitation robot on finger grasping function in stroke patients with hemiplegia: a randomised controlled trial. Li Y; Lian Y; Chen X; Zhang H; Xu G; Duan H; Xie X; Li Z J Neuroeng Rehabil; 2024 May; 21(1):77. PubMed ID: 38745227 [TBL] [Abstract][Full Text] [Related]
6. Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke. Nijenhuis SM; Prange GB; Amirabdollahian F; Sale P; Infarinato F; Nasr N; Mountain G; Hermens HJ; Stienen AH; Buurke JH; Rietman JS J Neuroeng Rehabil; 2015 Oct; 12():89. PubMed ID: 26452749 [TBL] [Abstract][Full Text] [Related]
7. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
8. Intensive virtual reality-based training for upper limb motor function in chronic stroke: a feasibility study using a single case experimental design and fMRI. Schuster-Amft C; Henneke A; Hartog-Keisker B; Holper L; Siekierka E; Chevrier E; Pyk P; Kollias S; Kiper D; Eng K Disabil Rehabil Assist Technol; 2015; 10(5):385-92. PubMed ID: 24730659 [TBL] [Abstract][Full Text] [Related]
9. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System. Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655 [TBL] [Abstract][Full Text] [Related]
10. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study. Perez-Marcos D; Chevalley O; Schmidlin T; Garipelli G; Serino A; Vuadens P; Tadi T; Blanke O; Millán JDR J Neuroeng Rehabil; 2017 Nov; 14(1):119. PubMed ID: 29149855 [TBL] [Abstract][Full Text] [Related]
11. Residual Upper Arm Motor Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface (BMI) Training. Curado MR; Cossio EG; Broetz D; Agostini M; Cho W; Brasil FL; Yilmaz O; Liberati G; Lepski G; Birbaumer N; Ramos-Murguialday A PLoS One; 2015; 10(10):e0140161. PubMed ID: 26495971 [TBL] [Abstract][Full Text] [Related]
12. Effects of Kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke. Aşkın A; Atar E; Koçyiğit H; Tosun A Somatosens Mot Res; 2018 Mar; 35(1):25-32. PubMed ID: 29529919 [TBL] [Abstract][Full Text] [Related]
13. The feasibility, acceptability and preliminary efficacy of a low-cost, virtual-reality based, upper-limb stroke rehabilitation device: a mixed methods study. Warland A; Paraskevopoulos I; Tsekleves E; Ryan J; Nowicky A; Griscti J; Levings H; Kilbride C Disabil Rehabil; 2019 Sep; 41(18):2119-2134. PubMed ID: 29644897 [No Abstract] [Full Text] [Related]
14. Task-Oriented Training by a Personalized Electromyography-Driven Soft Robotic Hand in Chronic Stroke: A Randomized Controlled Trial. Shi XQ; Ti CE; Lu HY; Hu CP; Xie DS; Yuan K; Heung HL; Leung TW; Li Z; Tong RK Neurorehabil Neural Repair; 2024 Aug; 38(8):595-606. PubMed ID: 38812378 [TBL] [Abstract][Full Text] [Related]
15. Exploring the impact of visual and movement based priming on a motor intervention in the acute phase post-stroke in persons with severe hemiparesis of the upper extremity. Patel J; Qiu Q; Yarossi M; Merians A; Massood S; Tunik E; Adamovich S; Fluet G Disabil Rehabil; 2017 Jul; 39(15):1515-1523. PubMed ID: 27636200 [TBL] [Abstract][Full Text] [Related]
16. [Virtual reality in upper extremity dysfunction: specific features of usage in acute stroke]. Dolganov MV; Karpova MI Vopr Kurortol Fizioter Lech Fiz Kult; 2019; 96(5):19-28. PubMed ID: 31626156 [TBL] [Abstract][Full Text] [Related]
17. Robotic-assisted rehabilitation of the upper limb after acute stroke. Masiero S; Celia A; Rosati G; Armani M Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510 [TBL] [Abstract][Full Text] [Related]
18. Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. Wittmann F; Held JP; Lambercy O; Starkey ML; Curt A; Höver R; Gassert R; Luft AR; Gonzenbach RR J Neuroeng Rehabil; 2016 Aug; 13(1):75. PubMed ID: 27515583 [TBL] [Abstract][Full Text] [Related]
19. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial. Barker RN; Brauer SG; Carson RG Stroke; 2008 Jun; 39(6):1800-7. PubMed ID: 18403742 [TBL] [Abstract][Full Text] [Related]
20. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. Thielbar KO; Lord TJ; Fischer HC; Lazzaro EC; Barth KC; Stoykov ME; Triandafilou KM; Kamper DG J Neuroeng Rehabil; 2014 Dec; 11():171. PubMed ID: 25542201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]