BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27169517)

  • 21. Molecular dynamics for computational proteomics of methylated histone H3.
    Grauffel C; Stote RH; Dejaegere A
    Biochim Biophys Acta; 2015 May; 1850(5):1026-1040. PubMed ID: 25240462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in mass spectrometry analysis of histone post-translational modifications: potential clinical impact of the PAT-H-MS approach.
    Bonaldi T; Noberini R
    Expert Rev Proteomics; 2016; 13(3):245-50. PubMed ID: 26822344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate Specificity Profiling of Histone-Modifying Enzymes by Peptide Microarray.
    Cornett EM; Dickson BM; Vaughan RM; Krishnan S; Trievel RC; Strahl BD; Rothbart SB
    Methods Enzymol; 2016; 574():31-52. PubMed ID: 27423856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trimethylacetic Anhydride-Based Derivatization Facilitates Quantification of Histone Marks at the MS1 Level.
    Kuchaříková H; Dobrovolná P; Lochmanová G; Zdráhal Z
    Mol Cell Proteomics; 2021; 20():100114. PubMed ID: 34129942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical proteomics approaches to examine novel histone posttranslational modifications.
    Li X; Li XD
    Curr Opin Chem Biol; 2015 Feb; 24():80-90. PubMed ID: 25461726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative chemical proteomics approach to identify post-translational modification-mediated protein-protein interactions.
    Li X; Foley EA; Molloy KR; Li Y; Chait BT; Kapoor TM
    J Am Chem Soc; 2012 Feb; 134(4):1982-5. PubMed ID: 22239320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Function and Mechanism of Novel Histone Posttranslational Modifications in Health and Disease.
    Xu H; Wu M; Ma X; Huang W; Xu Y
    Biomed Res Int; 2021; 2021():6635225. PubMed ID: 33763479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Approach to profile proteins that recognize post-translationally modified histone "tails".
    Li X; Kapoor TM
    J Am Chem Soc; 2010 Mar; 132(8):2504-5. PubMed ID: 20141135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromatin Proteomics Reveals Variable Histone Modifications during the Life Cycle of Trypanosoma cruzi.
    de Jesus TC; Nunes VS; Lopes Mde C; Martil DE; Iwai LK; Moretti NS; Machado FC; de Lima-Stein ML; Thiemann OH; Elias MC; Janzen C; Schenkman S; da Cunha JP
    J Proteome Res; 2016 Jun; 15(6):2039-51. PubMed ID: 27108550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers.
    Vermeulen M; Eberl HC; Matarese F; Marks H; Denissov S; Butter F; Lee KK; Olsen JV; Hyman AA; Stunnenberg HG; Mann M
    Cell; 2010 Sep; 142(6):967-80. PubMed ID: 20850016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoaffinity labeling of small-molecule-binding proteins by DNA-templated chemistry.
    Li G; Liu Y; Liu Y; Chen L; Wu S; Liu Y; Li X
    Angew Chem Int Ed Engl; 2013 Sep; 52(36):9544-9. PubMed ID: 23776013
    [No Abstract]   [Full Text] [Related]  

  • 32. Profiling post-translational modifications of histones in neural differentiation of embryonic stem cells using liquid chromatography-mass spectrometry.
    Zheng S; Sun M; Zhang K; Gu J; Guo Z; Tian S; Zhai G; He X; Jin Y; Zhang Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Apr; 1017-1018():36-44. PubMed ID: 26945132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ENL reads histone β-hydroxybutyrylation to modulate gene transcription.
    Chen C; Chen C; Wang A; Jiang Z; Zhao F; Li Y; Han Y; Niu Z; Tian S; Bai X; Zhang K; Zhai G
    Nucleic Acids Res; 2024 Jun; ():. PubMed ID: 38880495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA-guided photoactivatable probe-based chemical proteomics reveals the reader protein of mRNA methylation.
    Huang Y; Bai X; Guo Z; Dong H; Fu Y; Zhang H; Zhai G; Tian S; Wang Y; Zhang K
    iScience; 2021 Sep; 24(9):103046. PubMed ID: 34553132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive profiling of histone modifications using a label-free approach and its applications in determining structure-function relationships.
    Drogaris P; Wurtele H; Masumoto H; Verreault A; Thibault P
    Anal Chem; 2008 Sep; 80(17):6698-707. PubMed ID: 18671409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hitting the 'mark': interpreting lysine methylation in the context of active transcription.
    Wozniak GG; Strahl BD
    Biochim Biophys Acta; 2014 Dec; 1839(12):1353-61. PubMed ID: 24631869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying novel proteins recognizing histone modifications using peptide pull-down assay.
    Wysocka J
    Methods; 2006 Dec; 40(4):339-43. PubMed ID: 17101446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SILAC-based proteomic analysis to dissect the "histone modification signature" of human breast cancer cells.
    Cuomo A; Moretti S; Minucci S; Bonaldi T
    Amino Acids; 2011 Jul; 41(2):387-99. PubMed ID: 20617350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Picture perfect: DNA-templated photoaffinity labeling.
    Barluenga S; Winssinger N
    Chembiochem; 2013 Oct; 14(15):1927-8. PubMed ID: 24006240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Achievements in Characterizing the Histone Code and Approaches to Integrating Epigenomics and Systems Biology.
    Janssen KA; Sidoli S; Garcia BA
    Methods Enzymol; 2017; 586():359-378. PubMed ID: 28137571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.