These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 27169560)
1. Predicting Disease Risk, Identifying Stakeholders, and Informing Control Strategies: A Case Study of Anthrax in Montana. Morris LR; Blackburn JK Ecohealth; 2016 Jun; 13(2):262-73. PubMed ID: 27169560 [TBL] [Abstract][Full Text] [Related]
2. Elk Resource Selection and Implications for Anthrax Management in Montana. Morris LR; Proffitt KM; Asher V; Blackburn JK J Wildl Manage; 2016 Feb; 80(2):235-244. PubMed ID: 29887642 [TBL] [Abstract][Full Text] [Related]
3. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Carlson CJ; Kracalik IT; Ross N; Alexander KA; Hugh-Jones ME; Fegan M; Elkin BT; Epp T; Shury TK; Zhang W; Bagirova M; Getz WM; Blackburn JK Nat Microbiol; 2019 Aug; 4(8):1337-1343. PubMed ID: 31086311 [TBL] [Abstract][Full Text] [Related]
4. Predicting the Geographic Distribution of the Yang A; Mullins JC; Van Ert M; Bowen RA; Hadfield TL; Blackburn JK Am J Trop Med Hyg; 2020 Feb; 102(2):392-402. PubMed ID: 31802730 [No Abstract] [Full Text] [Related]
5. Potential Bacillus anthracis Risk Zones for Male Plains Bison ( Bison bison bison) in Southwestern Montana, USA. Nekorchuk DM; Morris LR; Asher V; Hunter DL; Ryan SJ; Blackburn JK J Wildl Dis; 2019 Jan; 55(1):136-141. PubMed ID: 30016211 [TBL] [Abstract][Full Text] [Related]
6. Modeling the Ecological Niche of Blackburn JK; Matakarimov S; Kozhokeeva S; Tagaeva Z; Bell LK; Kracalik IT; Zhunushov A Am J Trop Med Hyg; 2017 Mar; 96(3):550-556. PubMed ID: 28115677 [TBL] [Abstract][Full Text] [Related]
7. Anthrax bio-surveillance of livestock in Arua District, Uganda, 2017-2018. Omodo M; Gardela J; Namatovu A; Okurut RA; Esau M; Acham M; Nakanjako MF; Israel M; Isingoma E; Moses M; Paul L; Ssenkeera B; Atim SA; Gonahasa DN; Sekamatte M; Gouilh MA; Gonzalez JP Acta Trop; 2023 Apr; 240():106841. PubMed ID: 36693517 [TBL] [Abstract][Full Text] [Related]
8. Modelling the ecological niche of naturally occurring anthrax at global and circumpolar extents using an ensemble modelling framework. Deka MA; Vieira AR; Bower WA Transbound Emerg Dis; 2022 Sep; 69(5):e2563-e2577. PubMed ID: 35590480 [TBL] [Abstract][Full Text] [Related]
9. Recurrent Anthrax Outbreaks in Humans, Livestock, and Wildlife in the Same Locality, Kenya, 2014-2017. Muturi M; Gachohi J; Mwatondo A; Lekolool I; Gakuya F; Bett A; Osoro E; Bitek A; Thumbi SM; Munyua P; Oyas H; Njagi ON; Bett B; Njenga MK Am J Trop Med Hyg; 2018 Oct; 99(4):833-839. PubMed ID: 30105965 [TBL] [Abstract][Full Text] [Related]
10. Spatial analysis of human and livestock anthrax in Dien Bien province, Vietnam (2010-2019) and the significance of anthrax vaccination in livestock. Tan LM; Hung DN; My DT; Walker MA; Ha HTT; Thai PQ; Hung TTM; Blackburn JK PLoS Negl Trop Dis; 2022 Dec; 16(12):e0010942. PubMed ID: 36538536 [TBL] [Abstract][Full Text] [Related]
11. Sex-Specific Elk Resource Selection during the Anthrax Risk Period. Yang A; Proffitt KM; Asher V; Ryan SJ; Blackburn JK J Wildl Manage; 2021 Jan; 85(1):145-155. PubMed ID: 34393269 [TBL] [Abstract][Full Text] [Related]
12. Serological anthrax surveillance in wild boar (Sus scrofa) in Ukraine. Bagamian KH; Skrypnyk A; Rodina Y; Bezymennyi M; Nevolko O; Skrypnyk V; Blackburn JK Vector Borne Zoonotic Dis; 2014 Aug; 14(8):618-20. PubMed ID: 25072994 [TBL] [Abstract][Full Text] [Related]
13. Drivers and potential distribution of anthrax occurrence and incidence at national and sub-county levels across Kenya from 2006 to 2020 using INLA. Ndolo VA; Redding DW; Lekolool I; Mwangangi DM; Odhiambo DO; Deka MA; Conlan AJK; Wood JLN Sci Rep; 2022 Nov; 12(1):20083. PubMed ID: 36418897 [TBL] [Abstract][Full Text] [Related]
14. Combatting anthrax outbreaks across Nigeria's national land borders: need to optimize surveillance with epidemiological surveys. Mogaji HO; Adewale B; Smith SI; Igumbor EU; Idemili CJ; Taylor-Robinson AW Infect Dis Poverty; 2024 Feb; 13(1):10. PubMed ID: 38297349 [TBL] [Abstract][Full Text] [Related]
15. Participatory mapping identifies risk areas and environmental predictors of endemic anthrax in rural Africa. Aminu OR; Forde TL; Ekwem D; Johnson P; Nelli L; Mmbaga BT; Mshanga D; Shand M; Shirima G; Walsh M; Zadoks RN; Biek R; Lembo T Sci Rep; 2022 Jun; 12(1):10514. PubMed ID: 35732674 [TBL] [Abstract][Full Text] [Related]
16. Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecological [corrected] niche modeling. Blackburn JK; McNyset KM; Curtis A; Hugh-Jones ME Am J Trop Med Hyg; 2007 Dec; 77(6):1103-10. PubMed ID: 18165531 [TBL] [Abstract][Full Text] [Related]
17. Seasonality and Ecological Suitability Modelling for Anthrax ( Pittiglio C; Shadomy S; El Idrissi A; Soumare B; Lubroth J; Makonnen Y Animals (Basel); 2022 Apr; 12(9):. PubMed ID: 35565571 [TBL] [Abstract][Full Text] [Related]
19. Anthrax in one health in Southern and Southeastern Europe - the effect of climate change? Railean V; Sobolewski J; Jaśkowski JM Vet Res Commun; 2024 Apr; 48(2):623-632. PubMed ID: 37863848 [TBL] [Abstract][Full Text] [Related]
20. The pattern of anthrax at the wildlife-livestock-human interface in Zimbabwe. Mukarati NL; Matope G; de Garine-Wichatitsky M; Ndhlovu DN; Caron A; Pfukenyi DM PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008800. PubMed ID: 33075049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]