These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27170026)

  • 1. Determination of Stark parameters by cross-calibration in a multi-element laser-induced plasma.
    Liu H; Truscott BS; Ashfold MNR
    Sci Rep; 2016 May; 6():25609. PubMed ID: 27170026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research on the identification method of LTE condition in the laser-induced plasma].
    Fan JJ; Huang D; Wang X; Zhang L; Ma WG; Dong L; Yin WB; Jia ST
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3183-7. PubMed ID: 25881404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Laser-Induced Plasma: Stark Broadening Parameters of Pb(II) 2203.5 and 4386.5 Å Spectral Lines.
    Alonso-Medina A
    Appl Spectrosc; 2019 Feb; 73(2):133-151. PubMed ID: 30421963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Using Boltzmann Plots to Evaluate the Stark Broadening Parameters of Cu(I) Lines.
    Fikry M; Alhijry IA; Aboulfotouh AM; El Sherbini AM
    Appl Spectrosc; 2021 Oct; 75(10):1288-1295. PubMed ID: 33876980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-lines method for estimation of plasma temperature and characterization of plasma parameters in optically thick plasma conditions.
    Rezaei F
    Appl Opt; 2020 Apr; 59(10):3002-3009. PubMed ID: 32400582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) with Standard Reference Line for the Analysis of Stainless Steel.
    Fu H; Dong F; Wang H; Jia J; Ni Z
    Appl Spectrosc; 2017 Aug; 71(8):1982-1989. PubMed ID: 28485983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of optical thicknesses of magnesium emission spectral lines for diagnostics of laser-induced plasmas.
    Pace DM; D'Angelo CA; Bertuccelli G
    Appl Spectrosc; 2011 Oct; 65(10):1202-12. PubMed ID: 21986082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposed a self-absorption internal standard model to detect element concentrations of complex constituent material with a single emission line of element in laser plasmas.
    He GC; Shi LN; Hua YL; Niu JB; Lu C; Xie CQ
    Opt Express; 2020 Mar; 28(5):6018-6026. PubMed ID: 32225859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of calibration-free high repetition rate laser-ablation spark-induced breakdown spectroscopy for the quantitative elemental analysis of a silver alloy.
    Gao J; Kang J; Li R; Chen Y
    Appl Opt; 2020 May; 59(13):4091-4096. PubMed ID: 32400685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Stark Shifts and Widths Using Time Resolved Laser-Induced Breakdown Spectroscopy (LIBS) Measurements.
    Kumar P; Soumyashree S; Rao Epuru N; Banerjee SB; Singh RP; Subramanian KP
    Appl Spectrosc; 2020 Aug; 74(8):913-920. PubMed ID: 32602354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of local thermodynamic equilibrium in a laser-induced aluminum alloy plasma.
    Zhang Y; Zhao Z; Xu T; Niu G; Liu Y; Duan Y
    Appl Opt; 2016 Apr; 55(10):2741-7. PubMed ID: 27139680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Influence of Acquisition Delay for Calibration-Free Laser-Induced Breakdown Spectroscopy.
    Fu H; Dong F; Ni Z; Wang J
    Appl Spectrosc; 2016 Mar; 70(3):405-15. PubMed ID: 26968454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic and optical properties of warm dense copper.
    Miloshevsky G; Hassanein A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033109. PubMed ID: 26465577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of electron density and temperature from laser-induced nitrogen plasma at elevated pressure (1-6 bar).
    Rao AP; Gragston M; Patnaik AK; Hsu PS; Shattan MB
    Opt Express; 2019 Nov; 27(23):33779-33788. PubMed ID: 31878439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement error due to self-absorption in calibration-free laser-induced breakdown spectroscopy.
    Taleb A; Motto-Ros V; Carru MJ; Axente E; Craciun V; Pelascini F; Hermann J
    Anal Chim Acta; 2021 Nov; 1185():339070. PubMed ID: 34711325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial characterization of laser-induced plasmas by deconvolution of spatially resolved spectra.
    Aguilera JA; Aragón C; Bengoechea J
    Appl Opt; 2003 Oct; 42(30):5938-46. PubMed ID: 14594050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of non-local thermodynamic equilibrium and Zeeman effects on magnetic equilibrium reconstruction using spectral motional Stark effect diagnostic.
    Reimer R; Marchuk O; Geiger B; Mc Carthy PJ; Dunne M; Hobirk J; Wolf R;
    Rev Sci Instrum; 2017 Aug; 88(8):083509. PubMed ID: 28863658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Spectroscopic diagnostics of DC argon plasma at atmospheric pressure].
    Tu X; Lu SY; Yan JH; Ma ZY; Pan XC; Cen KF; Cheron B
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Oct; 26(10):1785-9. PubMed ID: 17205720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron density and gas temperature from line broadening in an argon surface-wave-sustained discharge at atmospheric pressure.
    Christova M; Castaños-Martinez E; Calzada MD; Kabouzi Y; Luque JM; Moisan M
    Appl Spectrosc; 2004 Sep; 58(9):1032-7. PubMed ID: 15479518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stark broadening experiments on a vacuum arc discharge in tin vapor.
    Kieft ER; van der Mullen JJ; Kroesen GM; Banine V; Koshelev KN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066402. PubMed ID: 15697509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.