BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 27170140)

  • 21. Mechanistic analysis of electroporation-induced cellular uptake of macromolecules.
    Zaharoff DA; Henshaw JW; Mossop B; Yuan F
    Exp Biol Med (Maywood); 2008 Jan; 233(1):94-105. PubMed ID: 18156311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sine wave electropermeabilization reveals the frequency-dependent response of the biological membranes.
    García-Sánchez T; Merla C; Fontaine J; Muscat A; Mir LM
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1022-1034. PubMed ID: 29410049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment.
    Valic B; Golzio M; Pavlin M; Schatz A; Faurie C; Gabriel B; Teissié J; Rols MP; Miklavcic D
    Eur Biophys J; 2003 Sep; 32(6):519-28. PubMed ID: 12712266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses.
    Joshi RP; Hu Q; Aly R; Schoenbach KH; Hjalmarson HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011913. PubMed ID: 11461294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical simulation of electroporation in spherical cells.
    Ramos A; Suzuki DO; Marques JL
    Artif Organs; 2004 Apr; 28(4):357-61. PubMed ID: 15084196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation--relation between short-lived and long-lived pores.
    Pavlin M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):38-46. PubMed ID: 18499534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electroporation of tissue and cells: A three-equation model of drug delivery.
    Argus F; Boyd B; Becker SM
    Comput Biol Med; 2017 May; 84():226-234. PubMed ID: 28412668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Experimentally Observed Complex Interplay between Pulse Duration, Electrical Field Strength, and Cell Orientation on Electroporation Outcome Using a Time-Dependent Nonlinear Numerical Model.
    Scuderi M; Dermol-Černe J; Batista Napotnik T; Chaigne S; Bernus O; Benoist D; Sigg DC; Rems L; Miklavčič D
    Biomolecules; 2023 Apr; 13(5):. PubMed ID: 37238597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physical modelling of electroporation in close cell-to-cell proximity environments.
    Gaynor PT; Bodger PS
    Phys Med Biol; 2006 Jun; 51(12):3175-88. PubMed ID: 16757870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High frequency electroporation efficiency is under control of membrane capacitive charging and voltage potential relaxation.
    Novickij V; Ruzgys P; Grainys A; Šatkauskas S
    Bioelectrochemistry; 2018 Feb; 119():92-97. PubMed ID: 28922628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic resonance electrical impedance tomography for monitoring electric field distribution during tissue electroporation.
    Kranjc M; Bajd F; Serša I; Miklavčič D
    IEEE Trans Med Imaging; 2011 Oct; 30(10):1771-8. PubMed ID: 21521664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequential finite element model of tissue electropermeabilization.
    Sel D; Cukjati D; Batiuskaite D; Slivnik T; Mir LM; Miklavcic D
    IEEE Trans Biomed Eng; 2005 May; 52(5):816-27. PubMed ID: 15887531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
    Vasilkoski Z; Esser AT; Gowrishankar TR; Weaver JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021904. PubMed ID: 17025469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical simulation of molecular uptake via electroporation.
    Li J; Lin H
    Bioelectrochemistry; 2011 Aug; 82(1):10-21. PubMed ID: 21621484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advantages of pulsed electric field ablation for COPD: Excellent killing effect on goblet cells.
    Zhu H; Leng J; Ju R; Qu S; Tian J; Leng H; Tao S; Liu C; Wu Z; Ren F; Lyu Y; Zhang N
    Bioelectrochemistry; 2024 Aug; 158():108726. PubMed ID: 38733722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of uncertain electrical properties on the conditions for the onset of electroporation in an eukaryotic cell.
    Elia S; Lamberti P; Tucci V
    IEEE Trans Nanobioscience; 2010 Sep; 9(3):204-12. PubMed ID: 20805046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of extracellular conductivity on electroporation-mediated molecular delivery.
    Li J; Tan W; Yu M; Lin H
    Biochim Biophys Acta; 2013 Feb; 1828(2):461-70. PubMed ID: 22954677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning.
    Neal RE; Garcia PA; Robertson JL; Davalos RV
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1076-85. PubMed ID: 22231669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effective conductivity of a suspension of permeabilized cells: a theoretical analysis.
    Pavlin M; Miklavcic D
    Biophys J; 2003 Aug; 85(2):719-29. PubMed ID: 12885623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroporation dependence on cell size: optical tweezers study.
    Henslee BE; Morss A; Hu X; Lafyatis GP; Lee LJ
    Anal Chem; 2011 Jun; 83(11):3998-4003. PubMed ID: 21473595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.