BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27170547)

  • 1. Evolution under Drug Pressure Remodels the Folding Free-Energy Landscape of Mature HIV-1 Protease.
    Louis JM; Roche J
    J Mol Biol; 2016 Jul; 428(13):2780-92. PubMed ID: 27170547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single point mutation induced alterations in the equilibrium structural transitions on the folding landscape of HIV-1 protease.
    Rout MK; Reddy JG; Phillips M; Hosur RV
    J Biomol Struct Dyn; 2013; 31(7):684-93. PubMed ID: 22909351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Studies of a Rationally Selected Multi-Drug Resistant HIV-1 Protease Reveal Synergistic Effect of Distal Mutations on Flap Dynamics.
    Agniswamy J; Louis JM; Roche J; Harrison RW; Weber IT
    PLoS One; 2016; 11(12):e0168616. PubMed ID: 27992544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-induced structural transition of mature HIV-1 protease from a combined NMR/MD simulation approach.
    Roche J; Louis JM; Bax A; Best RB
    Proteins; 2015 Dec; 83(12):2117-23. PubMed ID: 26385843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations Proximal to Sites of Autoproteolysis and the α-Helix That Co-evolve under Drug Pressure Modulate the Autoprocessing and Vitality of HIV-1 Protease.
    Louis JM; Deshmukh L; Sayer JM; Aniana A; Clore GM
    Biochemistry; 2015 Sep; 54(35):5414-24. PubMed ID: 26266692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The folding free-energy surface of HIV-1 protease: insights into the thermodynamic basis for resistance to inhibitors.
    Noel AF; Bilsel O; Kundu A; Wu Y; Zitzewitz JA; Matthews CR
    J Mol Biol; 2009 Apr; 387(4):1002-16. PubMed ID: 19150359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced stability of monomer fold correlates with extreme drug resistance of HIV-1 protease.
    Louis JM; Tözsér J; Roche J; Matúz K; Aniana A; Sayer JM
    Biochemistry; 2013 Oct; 52(43):7678-88. PubMed ID: 24079831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme multidrug resistant HIV-1 protease with 20 mutations is resistant to novel protease inhibitors with P1'-pyrrolidinone or P2-tris-tetrahydrofuran.
    Agniswamy J; Shen CH; Wang YF; Ghosh AK; Rao KV; Xu CX; Sayer JM; Louis JM; Weber IT
    J Med Chem; 2013 May; 56(10):4017-27. PubMed ID: 23590295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational variation of an extreme drug resistant mutant of HIV protease.
    Shen CH; Chang YC; Agniswamy J; Harrison RW; Weber IT
    J Mol Graph Model; 2015 Nov; 62():87-96. PubMed ID: 26397743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding kinetics of tryptophan side chains in the dimerization and hinge regions of HIV-I protease tethered dimer by real time NMR spectroscopy.
    Panchal SC; Hosur RV
    Biochem Biophys Res Commun; 2000 Mar; 269(2):387-92. PubMed ID: 10708562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease.
    Gupta A; Jamal S; Goyal S; Jain R; Wahi D; Grover A
    BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S10. PubMed ID: 26695135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme entropy-enthalpy compensation in a drug-resistant variant of HIV-1 protease.
    King NM; Prabu-Jeyabalan M; Bandaranayake RM; Nalam MN; Nalivaika EA; Özen A; Haliloğlu T; Yilmaz NK; Schiffer CA
    ACS Chem Biol; 2012 Sep; 7(9):1536-46. PubMed ID: 22712830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cantilever-centric mechanism of cooperative non-active site mutations in HIV protease: Implications for flap dynamics.
    Sherry D; Worth R; Ismail ZS; Sayed Y
    J Mol Graph Model; 2021 Jul; 106():107931. PubMed ID: 34030114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substituted Bis-THF Protease Inhibitors with Improved Potency against Highly Resistant Mature HIV-1 Protease PR20.
    Agniswamy J; Louis JM; Shen CH; Yashchuk S; Ghosh AK; Weber IT
    J Med Chem; 2015 Jun; 58(12):5088-95. PubMed ID: 26010498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of inhibitor binding on the structural stability and cooperativity of the HIV-1 protease.
    Todd MJ; Freire E
    Proteins; 1999 Aug; 36(2):147-56. PubMed ID: 10398363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease.
    Louis JM; Ishima R; Aniana A; Sayer JM
    Protein Sci; 2009 Dec; 18(12):2442-53. PubMed ID: 19798742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A synergy of activity, stability, and inhibitor-interaction of HIV-1 protease mutants evolved under drug-pressure.
    Khan SN; Persons JD; Guerrero M; Ilina TV; Oda M; Ishima R
    Protein Sci; 2021 Mar; 30(3):571-582. PubMed ID: 33314454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a consistent modeling of protein thermodynamic and kinetic cooperativity: how applicable is the transition state picture to folding and unfolding?
    Kaya H; Chan HS
    J Mol Biol; 2002 Jan; 315(4):899-909. PubMed ID: 11812156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.