These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27170708)

  • 1. Regionalization of surface lipids in insects.
    Wang Y; Yu Z; Zhang J; Moussian B
    Proc Biol Sci; 2016 May; 283(1830):. PubMed ID: 27170708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fatty acid elongase gene LmELO7 is required for hydrocarbon biosynthesis and cuticle permeability in the migratory locust, Locusta migratoria.
    Zhao X; Yang Y; Niu N; Zhao Y; Liu W; Ma E; Moussian B; Zhang J
    J Insect Physiol; 2020; 123():104052. PubMed ID: 32259526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apolipophorin-II/I Contributes to Cuticular Hydrocarbon Transport and Cuticle Barrier Construction in
    Zhao Y; Liu W; Zhao X; Yu Z; Guo H; Yang Y; Zhang J; Moussian B; Zhang J
    Front Physiol; 2020; 11():790. PubMed ID: 32733279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristic properties of proteins from pre-ecdysial cuticle of larvae and pupae of the mealworm Tenebrio molitor.
    Andersen SO
    Insect Biochem Mol Biol; 2002 Sep; 32(9):1077-87. PubMed ID: 12213244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double cuticle barrier in two global pests, the whitefly
    Wang Y; Carballo RG; Moussian B
    J Exp Biol; 2017 Apr; 220(Pt 8):1396-1399. PubMed ID: 28167802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence studies of proteins from larval and pupal cuticle of the yellow meal worm, Tenebrio molitor.
    Andersen SO; Rafn K; Roepstorff P
    Insect Biochem Mol Biol; 1997 Feb; 27(2):121-31. PubMed ID: 9066122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional Control of Quality Differences in the Lipid-Based Cuticle Barrier in
    Wang Y; Farine JP; Yang Y; Yang J; Tang W; Gehring N; Ferveur JF; Moussian B
    Front Genet; 2020; 11():887. PubMed ID: 32849846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two fatty acid synthase genes from the integument contribute to cuticular hydrocarbon biosynthesis and cuticle permeability in Locusta migratoria.
    Yang Y; Zhao X; Niu N; Zhao Y; Liu W; Moussian B; Zhang J
    Insect Mol Biol; 2020 Dec; 29(6):555-568. PubMed ID: 32741000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knockdown of LmCYP303A1 alters cuticular hydrocarbon profiles and increases the susceptibility to desiccation and insecticides in Locusta migratoria.
    Wu L; Yu Z; Jia Q; Zhang X; Ma E; Li S; Zhu KY; Feyereisen R; Zhang J
    Pestic Biochem Physiol; 2020 Sep; 168():104637. PubMed ID: 32711771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging-Related Variation of Cuticular Hydrocarbons in Wild Type and Variant Drosophila melanogaster.
    Cortot J; Farine JP; Ferveur JF; Everaerts C
    J Chem Ecol; 2022 Feb; 48(2):152-164. PubMed ID: 35022940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ABC transporter ABCH-9C is needed for cuticle barrier construction in Locusta migratoria.
    Yu Z; Wang Y; Zhao X; Liu X; Ma E; Moussian B; Zhang J
    Insect Biochem Mol Biol; 2017 Aug; 87():90-99. PubMed ID: 28610908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group I CDAs are responsible for a selective CHC-independent cuticular barrier in Locusta migratoria.
    Zhang T; Ma P; Zhou J; He Y; Liu W; Liu X; Zhang X; Yu R; Zhang M; Moussian B; Zhang J
    Pestic Biochem Physiol; 2021 Jun; 175():104854. PubMed ID: 33993972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster.
    Dembeck LM; Böröczky K; Huang W; Schal C; Anholt RR; Mackay TF
    Elife; 2015 Nov; 4():. PubMed ID: 26568309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both LmCYP4G genes function in decreasing cuticular penetration of insecticides in Locusta migratoria.
    Wu L; Zhang ZF; Yu Z; Yu R; Ma E; Fan YL; Liu TX; Feyereisen R; Zhu KY; Zhang J
    Pest Manag Sci; 2020 Nov; 76(11):3541-3550. PubMed ID: 32419293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DOMON domain protein LmKnk contributes to correct chitin content, pore canal formation and lipid deposition in the cuticle of Locusta migratoria during moulting.
    Yu RR; Zhang R; Liu WM; Zhao XM; Zhu KY; Moussian B; Zhang JZ
    Insect Mol Biol; 2022 Apr; 31(2):127-138. PubMed ID: 34738680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric surface lipid quantification in Drosophila.
    Yang Y; Flaven-Pouchon J; Cortot J; Ferveur JF; Moussian B
    Arch Insect Biochem Physiol; 2024 Feb; 115(2):e22091. PubMed ID: 38385805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cuticle inward barrier in
    Dong W; Dobler R; Dowling DK; Moussian B
    PeerJ; 2019; 7():e7802. PubMed ID: 31592352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative genetic analysis suggests causal association between cuticular hydrocarbon composition and desiccation survival in Drosophila melanogaster.
    Foley BR; Telonis-Scott M
    Heredity (Edinb); 2011 Jan; 106(1):68-77. PubMed ID: 20389309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cuticular hydrocarbon profiles differ between ant body parts: implications for communication and our understanding of CHC diffusion.
    Sprenger PP; Gerbes LJ; Sahm J; Menzel F
    Curr Zool; 2021 Oct; 67(5):531-540. PubMed ID: 34616951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genes underlying species differences in cuticular hydrocarbon production between
    Ward HKE; Moehring AJ
    Genome; 2021 Feb; 64(2):87-95. PubMed ID: 33211537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.