BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27171182)

  • 1. Towards Increasing the Clinical Relevance of In Silico Methods to Predict Pathogenic Missense Variants.
    Masica DL; Karchin R
    PLoS Comput Biol; 2016 May; 12(5):e1004725. PubMed ID: 27171182
    [No Abstract]   [Full Text] [Related]  

  • 2. The CYSMA web server: An example of integrative tool for in silico analysis of missense variants identified in Mendelian disorders.
    Sasorith S; Baux D; Bergougnoux A; Paulet D; Lahure A; Bareil C; Taulan-Cadars M; Roux AF; Koenig M; Claustres M; Raynal C
    Hum Mutat; 2020 Feb; 41(2):375-386. PubMed ID: 31674704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of DETECTER, an evolutionary genomic tool to analyze genetic variation, to the cystic fibrosis gene family.
    Gaucher EA; De Kee DW; Benner SA
    BMC Genomics; 2006 Mar; 7():44. PubMed ID: 16522197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural dynamics is a determinant of the functional significance of missense variants.
    Ponzoni L; Bahar I
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4164-4169. PubMed ID: 29610305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Severe cystic fibrosis in a Japanese girl caused by two novel CFTR (ABCC7) gene mutations: M152R and 1540del10.
    Morokawa N; Iizuka S; Tanano A; Katsube A; Muraji T; Eto Y; Yoshimura K
    Hum Mutat; 2000 May; 15(5):485. PubMed ID: 10790220
    [No Abstract]   [Full Text] [Related]  

  • 6. A novel missense mutation, S1159F, in exon 19 of the CFTR gene.
    Seydewitz HH; Mall M; Kuehr J
    Hum Mutat; 2000 Apr; 15(4):390. PubMed ID: 10738007
    [No Abstract]   [Full Text] [Related]  

  • 7. Novel double mutant CF allele identified in a cystic fibrosis patient with meconium ileus.
    Steffann J; Vidaud D; Bousquet S; Jullien M; Ninot A; Kaplan JC; Beldjord C; Bienvenu T
    Ann Genet; 1998; 41(4):213-5. PubMed ID: 9881185
    [No Abstract]   [Full Text] [Related]  

  • 8. A novel missense mutation (Y89C) in exon 3 of the CFTR (ABCC7) gene in a young male.
    Padoan R; Costantini D; Russo MC; Ambrosioni A; Fiori S; Prandoni S; Cantù-Rajnoldi A; Seia M; Giunta A
    Hum Mutat; 2000 May; 15(5):486. PubMed ID: 10790225
    [No Abstract]   [Full Text] [Related]  

  • 9. Do common in silico tools predict the clinical consequences of amino-acid substitutions in the CFTR gene?
    Dorfman R; Nalpathamkalam T; Taylor C; Gonska T; Keenan K; Yuan XW; Corey M; Tsui LC; Zielenski J; Durie P
    Clin Genet; 2010 May; 77(5):464-73. PubMed ID: 20059485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cystic fibrosis genetic counseling difficulties due to the identification of novel mutations in the CFTR gene.
    Poulou M; Fylaktou I; Fotoulaki M; Kanavakis E; Tzetis M
    J Cyst Fibros; 2012 Jul; 11(4):344-8. PubMed ID: 22326559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel missense mutation (D110E) in exon 4 of CFTR (ABCC7) in a CF infant presenting with hypochloraemic metabolic alkalosis.
    Padoan R; Bassotti A; Seia M; Ambrosioni A; Fiori S; Prandoni S; Rajnoldi AC; Giunta A; Corbetta C
    Hum Mutat; 2000 May; 15(5):485. PubMed ID: 10790222
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification of a cystic fibrosis mutation W19X in Tunisia.
    Boudaya M; Fredj SH; Siala H; Bibi A; Messaoud T
    Ann Biol Clin (Paris); 2013; 71(2):223-6. PubMed ID: 23587593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformative therapies for rare CFTR missense alleles.
    Oliver KE; Han ST; Sorscher EJ; Cutting GR
    Curr Opin Pharmacol; 2017 Jun; 34():76-82. PubMed ID: 29032041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Missense variants in CFTR nucleotide-binding domains predict quantitative phenotypes associated with cystic fibrosis disease severity.
    Masica DL; Sosnay PR; Raraigh KS; Cutting GR; Karchin R
    Hum Mol Genet; 2015 Apr; 24(7):1908-17. PubMed ID: 25489051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel stop mutation in exon 18 (W1145X) of the CFTR (ABCC7) gene in an adult CF patient.
    Seia M; Cantù-Rajnoldi A; Ambrosioni A; Fiori S; Bassotti A; Pizzamiglio G; Giunta A; Padoan R
    Hum Mutat; 2000 Dec; 16(6):532-3. PubMed ID: 11102992
    [No Abstract]   [Full Text] [Related]  

  • 16. Mutations located in exon 24 of the CFTR gene are associated with a mild cystic fibrosis phenotype.
    Bienvenu T; Viel M; Leroy C; Van Esch H; Fajac I; Dusser D; Hubert D
    Clin Genet; 2003 Sep; 64(3):266-8. PubMed ID: 12919146
    [No Abstract]   [Full Text] [Related]  

  • 17. R248G cystic fibrosis transmembrane conductance regulator mutation in three siblings presenting with recurrent acute pancreatitis and reproductive issues: a case series.
    Villalona S; Glover-López G; Ortega-García JA; Moya-Quiles R; Mondejar-López P; Martínez-Romero MC; Rigabert-Montiel M; Pastor-Vivero MD; Sánchez-Solís M
    J Med Case Rep; 2017 Feb; 11(1):42. PubMed ID: 28196530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Diagnosis of Cystic Fibrosis.
    Deignan JL; Grody WW
    Curr Protoc Hum Genet; 2016 Jan; 88():9.28.1-9.28.6. PubMed ID: 26724724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the disease liability of CFTR variants.
    Sosnay PR; Castellani C; Corey M; Dorfman R; Zielenski J; Karchin R; Penland CM; Cutting GR
    Methods Mol Biol; 2011; 742():355-72. PubMed ID: 21547743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency and clinical significance of the S1235R mutation in the cystic fibrosis transmembrane conductance regulator gene: results from a collaborative study.
    Monaghan KG; Feldman GL; Barbarotto GM; Manji S; Desai TK; Snow K
    Am J Med Genet; 2000 Dec; 95(4):361-5. PubMed ID: 11186891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.