BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27171345)

  • 1. Structure of the Escherichia coli ArnA N-formyltransferase domain in complex with N(5) -formyltetrahydrofolate and UDP-Ara4N.
    Genthe NA; Thoden JB; Holden HM
    Protein Sci; 2016 Aug; 25(8):1555-62. PubMed ID: 27171345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-Amino-4-deoxy-L-arabinose. Identification and function oF UDP-4-deoxy-4-formamido-L-arabinose.
    Breazeale SD; Ribeiro AA; McClerren AL; Raetz CR
    J Biol Chem; 2005 Apr; 280(14):14154-67. PubMed ID: 15695810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure and mechanism of the Escherichia coli ArnA (PmrI) transformylase domain. An enzyme for lipid A modification with 4-amino-4-deoxy-L-arabinose and polymyxin resistance.
    Gatzeva-Topalova PZ; May AP; Sousa MC
    Biochemistry; 2005 Apr; 44(14):5328-38. PubMed ID: 15807526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of both domains of ArnA, a dual function decarboxylase and a formyltransferase, involved in 4-amino-4-deoxy-L-arabinose biosynthesis.
    Williams GJ; Breazeale SD; Raetz CR; Naismith JH
    J Biol Chem; 2005 Jun; 280(24):23000-8. PubMed ID: 15809294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of Escherichia coli ArnA (PmrI) decarboxylase domain. A key enzyme for lipid A modification with 4-amino-4-deoxy-L-arabinose and polymyxin resistance.
    Gatzeva-Topalova PZ; May AP; Sousa MC
    Biochemistry; 2004 Oct; 43(42):13370-9. PubMed ID: 15491143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance.
    Gatzeva-Topalova PZ; May AP; Sousa MC
    Structure; 2005 Jun; 13(6):929-42. PubMed ID: 15939024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid a species modified with 4-amino-4-deoxy-L-arabinose.
    Breazeale SD; Ribeiro AA; Raetz CR
    J Biol Chem; 2002 Jan; 277(4):2886-96. PubMed ID: 11706007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose.
    Breazeale SD; Ribeiro AA; Raetz CR
    J Biol Chem; 2003 Jul; 278(27):24731-9. PubMed ID: 12704196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of apo ArnA features an unexpected central binding pocket and provides an explanation for enzymatic cooperativity.
    Fischer U; Hertlein S; Grimm C
    Acta Crystallogr D Biol Crystallogr; 2015 Mar; 71(Pt 3):687-96. PubMed ID: 25760615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for substrate specificity in ArnB. A key enzyme in the polymyxin resistance pathway of Gram-negative bacteria.
    Lee M; Sousa MC
    Biochemistry; 2014 Feb; 53(4):796-805. PubMed ID: 24460375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase.
    Han SH; Kim BG; Yoon JA; Chong Y; Ahn JH
    Appl Environ Microbiol; 2014 May; 80(9):2754-62. PubMed ID: 24561591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli.
    Yan A; Guan Z; Raetz CR
    J Biol Chem; 2007 Dec; 282(49):36077-89. PubMed ID: 17928292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a bifunctional UDP-4-keto-pentose/UDP-xylose synthase in the plant pathogenic bacterium Ralstonia solanacearum strain GMI1000, a distinct member of the 4,6-dehydratase and decarboxylase family.
    Gu X; Glushka J; Yin Y; Xu Y; Denny T; Smith J; Jiang Y; Bar-Peled M
    J Biol Chem; 2010 Mar; 285(12):9030-40. PubMed ID: 20118241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ArnT proteins that catalyze the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases.
    Tavares-Carreón F; Fathy Mohamed Y; Andrade A; Valvano MA
    Glycobiology; 2016 Mar; 26(3):286-300. PubMed ID: 26515403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional structure of a sugar N-formyltransferase from Francisella tularensis.
    Zimmer AL; Thoden JB; Holden HM
    Protein Sci; 2014 Mar; 23(3):273-83. PubMed ID: 24347283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time NMR monitoring of intermediates and labile products of the bifunctional enzyme UDP-apiose/UDP-xylose synthase.
    Guyett P; Glushka J; Gu X; Bar-Peled M
    Carbohydr Res; 2009 Jun; 344(9):1072-8. PubMed ID: 19375693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and Function of ArnD. A Deformylase Essential for Lipid A Modification with 4-Amino-4-deoxy-l-arabinose and Polymyxin Resistance.
    Muñoz-Escudero D; Breazeale SD; Lee M; Guan Z; Raetz CRH; Sousa MC
    Biochemistry; 2023 Oct; 62(20):2970-2981. PubMed ID: 37782650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase.
    Lin F; Ferguson KL; Boyer DR; Lin XN; Marsh EN
    ACS Chem Biol; 2015 Apr; 10(4):1137-44. PubMed ID: 25647642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli.
    Thoden JB; Hegeman AD; Wesenberg G; Chapeau MC; Frey PA; Holden HM
    Biochemistry; 1997 May; 36(21):6294-304. PubMed ID: 9174344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human UDP-α-D-xylose synthase and Escherichia coli ArnA conserve a conformational shunt that controls whether xylose or 4-keto-xylose is produced.
    Polizzi SJ; Walsh RM; Peeples WB; Lim JM; Wells L; Wood ZA
    Biochemistry; 2012 Nov; 51(44):8844-55. PubMed ID: 23072385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.