BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27171646)

  • 21. Co
    Deng DR; Xue F; Jia YJ; Ye JC; Bai CD; Zheng MS; Dong QF
    ACS Nano; 2017 Jun; 11(6):6031-6039. PubMed ID: 28570815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled Synthesis of Sulfur-Rich Polymeric Selenium Sulfides as Promising Electrode Materials for Long-Life, High-Rate Lithium Metal Batteries.
    Dong P; Han KS; Lee JI; Zhang X; Cha Y; Song MK
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29565-29573. PubMed ID: 30091586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer.
    Wei H; Ma J; Li B; Zuo Y; Xia D
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20276-81. PubMed ID: 25275455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries.
    Wu HL; Huff LA; Gewirth AA
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1709-19. PubMed ID: 25543831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waste to Wealth: Exhausted Nitrogen-Doped Mesoporous Carbon/MgO Desulfurizers Turned to High-Sulfur-Loading Composite Cathodes for Li-S Batteries.
    Ding G; Li Y; Zhang Y; Huang C; Yao X; Lin K; Shen K; Yan W; Sun F; Zhou L
    ACS Appl Mater Interfaces; 2019 May; 11(21):19096-19103. PubMed ID: 31075199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.
    Chung SH; Chang CH; Manthiram A
    Small; 2016 Feb; 12(7):939-50. PubMed ID: 26715383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Foldable and High Sulfur Loading 3D Carbon Electrode for High-performance Li-S Battery Application.
    He N; Zhong L; Xiao M; Wang S; Han D; Meng Y
    Sci Rep; 2016 Sep; 6():33871. PubMed ID: 27677602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and facile synthesis of defect-rich C-MoS
    Tian C; Wu J; Ma Z; Li B; Li P; Zu X; Xiang X
    Beilstein J Nanotechnol; 2019; 10():2251-2260. PubMed ID: 31807410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium-Sulfur Batteries.
    Sun L; Wang D; Luo Y; Wang K; Kong W; Wu Y; Zhang L; Jiang K; Li Q; Zhang Y; Wang J; Fan S
    ACS Nano; 2016 Jan; 10(1):1300-8. PubMed ID: 26695394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast, reversible lithium storage with a sulfur/long-chain-polysulfide redox couple.
    Su YS; Fu Y; Guo B; Dai S; Manthiram A
    Chemistry; 2013 Jun; 19(26):8621-6. PubMed ID: 23670897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Li
    Ju Y; Meng Y; Wei Y; Bian X; Pang Q; Gao Y; Du F; Liu B; Chen G
    Chemistry; 2016 Dec; 22(50):18073-18079. PubMed ID: 27727501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Situ Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS
    Tang W; Chen Z; Tian B; Lee HW; Zhao X; Fan X; Fan Y; Leng K; Peng C; Kim MH; Li M; Lin M; Su J; Chen J; Jeong HY; Yin X; Zhang Q; Zhou W; Loh KP; Zheng GW
    J Am Chem Soc; 2017 Jul; 139(29):10133-10141. PubMed ID: 28671465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Porous Molybdenum Carbide Nanorods as Novel "Bifunctional" Cathode Material for Li-S Batteries.
    Wang Z; Liu J; Sun L; Zhang Y; Fu Q; Xie H; Sun H
    Chemistry; 2018 Sep; 24(53):14154-14161. PubMed ID: 29873130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SnS2- Compared to SnO2-Stabilized S/C Composites toward High-Performance Lithium Sulfur Batteries.
    Li X; Lu Y; Hou Z; Zhang W; Zhu Y; Qian Y; Liang J; Qian Y
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19550-7. PubMed ID: 27419855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molybdenum Disulfide/Tin Disulfide Ultrathin Nanosheets as Cathodes for Sodium-Carbon Dioxide Batteries.
    Pichaimuthu K; Jena A; Chang H; Su C; Hu SF; Liu RS
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5834-5842. PubMed ID: 35060710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the degradation mechanism of rechargeable lithium/sulfur cells: a comprehensive study of the sulfur-graphene oxide cathode after discharge-charge cycling.
    Feng X; Song MK; Stolte WC; Gardenghi D; Zhang D; Sun X; Zhu J; Cairns EJ; Guo J
    Phys Chem Chem Phys; 2014 Aug; 16(32):16931-40. PubMed ID: 24781200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bottom-up, hard template and scalable approaches toward designing nanostructured Li2S for high performance lithium sulfur batteries.
    Chen L; Liu Y; Dietz-Rago N; Shaw LL
    Nanoscale; 2015 Nov; 7(43):18071-80. PubMed ID: 26420373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries.
    Li G; Sun J; Hou W; Jiang S; Huang Y; Geng J
    Nat Commun; 2016 Feb; 7():10601. PubMed ID: 26830732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation on Fabrication of Reduced Graphene Oxide-Sulfur Composite Cathodes for Li-S Battery via Hydrothermal and Thermal Reduction Methods.
    Li Z; Sun H; Pang Y; Yu M; Zheng S
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33670187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.