These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27171671)

  • 41. Nonclinical regulatory immunotoxicity testing of nanomedicinal products: Proposed strategy and possible pitfalls.
    Giannakou C; Park MVDZ; Bosselaers IEM; de Jong WH; van der Laan JW; van Loveren H; Vandebriel RJ; Geertsma RE
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Sep; 12(5):e1633. PubMed ID: 32266791
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The immunomodulatory effects of titanium dioxide and silver nanoparticles.
    Lappas CM
    Food Chem Toxicol; 2015 Nov; 85():78-83. PubMed ID: 26051351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective.
    Moghimi SM; Hunter AC; Andresen TL
    Annu Rev Pharmacol Toxicol; 2012; 52():481-503. PubMed ID: 22035254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Co-opting Moore's law: Therapeutics, vaccines and interfacially active particles manufactured via PRINT®.
    DeSimone JM
    J Control Release; 2016 Oct; 240():541-543. PubMed ID: 27423326
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Overview on experimental models of interactions between nanoparticles and the immune system.
    Najafi-Hajivar S; Zakeri-Milani P; Mohammadi H; Niazi M; Soleymani-Goloujeh M; Baradaran B; Valizadeh H
    Biomed Pharmacother; 2016 Oct; 83():1365-1378. PubMed ID: 27580456
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Challenges in assessing nanomaterial toxicology: a personal perspective.
    Geraci CL; Castranova V
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(6):569-77. PubMed ID: 20799267
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology.
    Li Y; Abbaspour MR; Grootendorst PV; Rauth AM; Wu XY
    Eur J Pharm Biopharm; 2015 Aug; 94():170-9. PubMed ID: 25986587
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution.
    Dobrovolskaia MA; Aggarwal P; Hall JB; McNeil SE
    Mol Pharm; 2008; 5(4):487-95. PubMed ID: 18510338
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Endocytosis at the nanoscale.
    Canton I; Battaglia G
    Chem Soc Rev; 2012 Apr; 41(7):2718-39. PubMed ID: 22389111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach.
    Luan F; Kleandrova VV; González-Díaz H; Ruso JM; Melo A; Speck-Planche A; Cordeiro MN
    Nanoscale; 2014 Sep; 6(18):10623-30. PubMed ID: 25083742
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure.
    Cao Y; Long J; Liu L; He T; Jiang L; Zhao C; Li Z
    Life Sci; 2017 Oct; 186():33-42. PubMed ID: 28782531
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards understanding of nanoparticle-protein corona.
    Ge C; Tian J; Zhao Y; Chen C; Zhou R; Chai Z
    Arch Toxicol; 2015 Apr; 89(4):519-39. PubMed ID: 25637415
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanotoxicology: advances and pitfalls in research methodology.
    Azhdarzadeh M; Saei AA; Sharifi S; Hajipour MJ; Alkilany AM; Sharifzadeh M; Ramazani F; Laurent S; Mashaghi A; Mahmoudi M
    Nanomedicine (Lond); 2015; 10(18):2931-52. PubMed ID: 26370561
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks.
    Warheit DB; Sayes CM; Reed KL; Swain KA
    Pharmacol Ther; 2008 Oct; 120(1):35-42. PubMed ID: 18703086
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Methodologies and approaches for the analysis of cell-nanoparticle interactions.
    Ivask A; Mitchell AJ; Malysheva A; Voelcker NH; Lombi E
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 May; 10(3):e1486. PubMed ID: 28731280
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes.
    Yan L; Zhao F; Li S; Hu Z; Zhao Y
    Nanoscale; 2011 Feb; 3(2):362-82. PubMed ID: 21157592
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model.
    Bohnsack JP; Assemi S; Miller JD; Furgeson DY
    Methods Mol Biol; 2012; 926():261-316. PubMed ID: 22975971
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multifunctional nanoparticles for use in theranostic applications.
    Cole JT; Holland NB
    Drug Deliv Transl Res; 2015 Jun; 5(3):295-309. PubMed ID: 25787729
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoparticle therapeutics: a personal perspective.
    McNeil SE
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(3):264-71. PubMed ID: 20049796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Harnessing nanoparticles for immune modulation.
    Getts DR; Shea LD; Miller SD; King NJ
    Trends Immunol; 2015 Jul; 36(7):419-27. PubMed ID: 26088391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.