These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 27171886)
1. Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring. Olsson AL; Wargenau A; Tufenkji N ACS Appl Mater Interfaces; 2016 Jun; 8(22):13698-706. PubMed ID: 27171886 [TBL] [Abstract][Full Text] [Related]
2. Biosensor for detection of antibiotic resistant Staphylococcus bacteria. Guntupalli R; Sorokulova I; Olsen E; Globa L; Pustovyy O; Vodyanoy V J Vis Exp; 2013 May; (75):e50474. PubMed ID: 23685833 [TBL] [Abstract][Full Text] [Related]
3. Detection and identification of methicillin resistant and sensitive strains of Staphylococcus aureus using tandem measurements. Guntupalli R; Sorokulova I; Olsen E; Globa L; Pustovyy O; Moore T; Chin B; Barbaree J; Vodyanoy V J Microbiol Methods; 2012 Sep; 90(3):182-91. PubMed ID: 22587932 [TBL] [Abstract][Full Text] [Related]
4. Effects of environmental and clinical interferents on the host capture efficiency of immobilized bacteriophages. Dixon DV; Hosseinidoust Z; Tufenkji N Langmuir; 2014 Mar; 30(11):3184-90. PubMed ID: 24617341 [TBL] [Abstract][Full Text] [Related]
5. Investigation of SARS-CoV-2 nucleocapsid protein interaction with a specific antibody by combined spectroscopic ellipsometry and quartz crystal microbalance with dissipation. Plikusiene I; Maciulis V; Juciute S; Ramanavicius A; Balevicius Z; Slibinskas R; Kucinskaite-Kodze I; Simanavicius M; Balevicius S; Ramanaviciene A J Colloid Interface Sci; 2022 Nov; 626():113-122. PubMed ID: 35780545 [TBL] [Abstract][Full Text] [Related]
6. Characterizing Surface-Immobilized DNA Structures and Devices Using a Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). Dunn KE; Trefzer MA; Johnson S; Tyrrell AM Methods Mol Biol; 2018; 1811():101-114. PubMed ID: 29926448 [TBL] [Abstract][Full Text] [Related]
7. Bacterial biosensing: Recent advances in phage-based bioassays and biosensors. Farooq U; Yang Q; Ullah MW; Wang S Biosens Bioelectron; 2018 Oct; 118():204-216. PubMed ID: 30081260 [TBL] [Abstract][Full Text] [Related]
8. Surface-immobilization of chromatographically purified bacteriophages for the optimized capture of bacteria. Naidoo R; Singh A; Arya SK; Beadle B; Glass N; Tanha J; Szymanski CM; Evoy S Bacteriophage; 2012 Jan; 2(1):15-24. PubMed ID: 22666653 [TBL] [Abstract][Full Text] [Related]
9. Quartz crystal microbalance (QCM) as a device for the screening of phage libraries. Hengerer A; Decker J; Prohaska E; Hauck S; Kösslinger C; Wolf H Biosens Bioelectron; 1999 Feb; 14(2):139-44. PubMed ID: 10101836 [TBL] [Abstract][Full Text] [Related]
11. Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core-shell type magnetic separation. Ozalp VC; Bayramoglu G; Erdem Z; Arica MY Anal Chim Acta; 2015 Jan; 853():533-540. PubMed ID: 25467500 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces. Wang C; Sauvageau D; Elias A ACS Appl Mater Interfaces; 2016 Jan; 8(2):1128-38. PubMed ID: 26741170 [TBL] [Abstract][Full Text] [Related]
13. Real-time analysis of dual-display phage immobilization and autoantibody screening using quartz crystal microbalance with dissipation monitoring. Rajaram K; Losada-Pérez P; Vermeeren V; Hosseinkhani B; Wagner P; Somers V; Michiels L Int J Nanomedicine; 2015; 10():5237-47. PubMed ID: 26316752 [TBL] [Abstract][Full Text] [Related]
14. Application of Tamm Plasmon Polaritons and Cavity Modes for Biosensing in the Combined Spectroscopic Ellipsometry and Quartz Crystal Microbalance Method. Plikusienė I; Bužavaitė-Vertelienė E; Mačiulis V; Valavičius A; Ramanavičienė A; Balevičius Z Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940258 [TBL] [Abstract][Full Text] [Related]
15. Bacterial capture efficiency and antimicrobial activity of phage-functionalized model surfaces. Hosseinidoust Z; Van de Ven TG; Tufenkji N Langmuir; 2011 May; 27(9):5472-80. PubMed ID: 21452812 [TBL] [Abstract][Full Text] [Related]
16. Application of bacteriophages in sensor development. Peltomaa R; López-Perolio I; Benito-Peña E; Barderas R; Moreno-Bondi MC Anal Bioanal Chem; 2016 Mar; 408(7):1805-28. PubMed ID: 26472318 [TBL] [Abstract][Full Text] [Related]
17. Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Salam F; Uludag Y; Tothill IE Talanta; 2013 Oct; 115():761-7. PubMed ID: 24054660 [TBL] [Abstract][Full Text] [Related]
18. Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Hussain W; Ullah MW; Farooq U; Aziz A; Wang S Biosens Bioelectron; 2021 Apr; 177():112973. PubMed ID: 33429203 [TBL] [Abstract][Full Text] [Related]
19. Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies. Kasper M; Traxler L; Salopek J; Grabmayr H; Ebner A; Kienberger F Biosensors (Basel); 2016 May; 6(2):23. PubMed ID: 27231946 [TBL] [Abstract][Full Text] [Related]
20. Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Pirich CL; de Freitas RA; Torresi RM; Picheth GF; Sierakowski MR Biosens Bioelectron; 2017 Jun; 92():47-53. PubMed ID: 28187298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]