BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27172219)

  • 21. The APSES transcription factor Efg1 is a global regulator that controls morphogenesis and biofilm formation in Candida parapsilosis.
    Connolly LA; Riccombeni A; Grózer Z; Holland LM; Lynch DB; Andes DR; Gácser A; Butler G
    Mol Microbiol; 2013 Oct; 90(1):36-53. PubMed ID: 23895281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans.
    Zordan RE; Miller MG; Galgoczy DJ; Tuch BB; Johnson AD
    PLoS Biol; 2007 Oct; 5(10):e256. PubMed ID: 17880264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motor protein Myo5p is required to maintain the regulatory circuit controlling WOR1 expression in Candida albicans.
    Kachurina N; Turcotte B; Whiteway M
    Eukaryot Cell; 2012 May; 11(5):626-37. PubMed ID: 22408227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The WH11 gene of Candida albicans is regulated in two distinct developmental programs through the same transcription activation sequences.
    Srikantha T; Tsai LK; Soll DR
    J Bacteriol; 1997 Jun; 179(12):3837-44. PubMed ID: 9190797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans.
    Huang G; Wang H; Chou S; Nie X; Chen J; Liu H
    Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12813-8. PubMed ID: 16905649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of the Cph1-dependent MAP kinase signaling pathway induces white-opaque switching in Candida albicans.
    Ramírez-Zavala B; Weyler M; Gildor T; Schmauch C; Kornitzer D; Arkowitz R; Morschhäuser J
    PLoS Pathog; 2013; 9(10):e1003696. PubMed ID: 24130492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and Characterization of Wor4, a New Transcriptional Regulator of White-Opaque Switching.
    Lohse MB; Johnson AD
    G3 (Bethesda); 2016 Jan; 6(3):721-9. PubMed ID: 26772749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Target specificity of the Candida albicans Efg1 regulator.
    Lassak T; Schneider E; Bussmann M; Kurtz D; Manak JR; Srikantha T; Soll DR; Ernst JF
    Mol Microbiol; 2011 Nov; 82(3):602-18. PubMed ID: 21923768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the
    Conway TP; Conway K; Boksa FA; Pujol C; Wessels D; Soll DR
    mBio; 2021 Oct; 12(5):e0232021. PubMed ID: 34488444
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Glazier VE
    Front Cell Infect Microbiol; 2022; 12():855229. PubMed ID: 35392604
    [No Abstract]   [Full Text] [Related]  

  • 31. The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans.
    Srikantha T; Klapach A; Lorenz WW; Tsai LK; Laughlin LA; Gorman JA; Soll DR
    J Bacteriol; 1996 Jan; 178(1):121-9. PubMed ID: 8550405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rim101-upregulated Fets contribute to dark pigment formation in gray cells of Candida albicans.
    Dai B; Xu Y; Wu H; Chen J
    Acta Biochim Biophys Sin (Shanghai); 2021 Dec; 53(12):1723-1730. PubMed ID: 34599586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a negative regulatory element which regulates basal transcription of a multidrug resistance gene CDR1 of Candida albicans.
    Gaur NA; Puri N; Karnani N; Mukhopadhyay G; Goswami SK; Prasad R
    FEMS Yeast Res; 2004 Jan; 4(4-5):389-99. PubMed ID: 14734019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein.
    Leng P; Lee PR; Wu H; Brown AJ
    J Bacteriol; 2001 Jul; 183(13):4090-3. PubMed ID: 11395474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N-acetylglucosamine-induced white-to-opaque switching in Candida albicans is independent of the Wor2 transcription factor.
    Tong Y; Cao C; Xie J; Ni J; Guan G; Tao L; Zhang L; Huang G
    Fungal Genet Biol; 2014 Jan; 62():71-7. PubMed ID: 24161730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphogenesis-regulated localization of protein kinase A to genomic sites in Candida albicans.
    Schaekel A; Desai PR; Ernst JF
    BMC Genomics; 2013 Dec; 14(1):842. PubMed ID: 24289325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptation of the Efg1p morphogenetic pathway in Candida albicans by negative autoregulation and PKA-dependent repression of the EFG1 gene.
    Tebarth B; Doedt T; Krishnamurthy S; Weide M; Monterola F; Dominguez A; Ernst JF
    J Mol Biol; 2003 Jun; 329(5):949-62. PubMed ID: 12798685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans.
    Argimón S; Wishart JA; Leng R; Macaskill S; Mavor A; Alexandris T; Nicholls S; Knight AW; Enjalbert B; Walmsley R; Odds FC; Gow NA; Brown AJ
    Eukaryot Cell; 2007 Apr; 6(4):682-92. PubMed ID: 17277173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi.
    Stoldt VR; Sonneborn A; Leuker CE; Ernst JF
    EMBO J; 1997 Apr; 16(8):1982-91. PubMed ID: 9155024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The white-phase-specific gene WH11 is not required for white-opaque switching in Candida albicans.
    Park YN; Strauss A; Morschhäuser J
    Mol Genet Genomics; 2004 Aug; 272(1):88-97. PubMed ID: 15249973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.