These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27172520)

  • 1. Theoretical characterization of the surface composition of ruthenium nanoparticles in equilibrium with syngas.
    Cusinato L; Martínez-Prieto LM; Chaudret B; Del Rosal I; Poteau R
    Nanoscale; 2016 Jun; 8(21):10974-92. PubMed ID: 27172520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape, electronic structure and steric effects of organometallic nanocatalysts: relevant tools to improve the synergy between theory and experiment.
    Cusinato L; Del Rosal I; Poteau R
    Dalton Trans; 2017 Jan; 46(2):378-395. PubMed ID: 27934982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive morphology, stoichiometry and structure of surface species in supported Ru nanoparticles under H2 and CO atmospheres from combined experimental and DFT studies.
    Comas-Vives A; Furman K; Gajan D; Akatay MC; Lesage A; Ribeiro FH; Copéret C
    Phys Chem Chem Phys; 2016 Jan; 18(3):1969-79. PubMed ID: 26686546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size dependent stability of cobalt nanoparticles on silica under high conversion Fischer-Tropsch environment.
    Wolf M; Kotzé H; Fischer N; Claeys M
    Faraday Discuss; 2017 Apr; 197():243-268. PubMed ID: 28198896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of Structure Sensitivity in the Fischer-Tropsch Reaction on Model Cobalt Nanoparticles by Time-Resolved Chemical Transient Kinetics.
    Ralston WT; Melaet G; Saephan T; Somorjai GA
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7415-7419. PubMed ID: 28543941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insight into carbon-carbon bond formation on cobalt under simulated Fischer-Tropsch synthesis conditions.
    Weststrate CJK; Sharma D; Garcia Rodriguez D; Gleeson MA; Fredriksson HOA; Niemantsverdriet JWH
    Nat Commun; 2020 Feb; 11(1):750. PubMed ID: 32029729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical study of H(2) dissociation on (sq.rt(3) x sq.rt(3))R30 degrees CO/Ru(0001).
    Groot IM; Juanes-Marcos JC; Olsen RA; Kroes GJ
    J Chem Phys; 2010 Apr; 132(14):144704. PubMed ID: 20406007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Formation and Stability of Adsorbed Formyl as a Possible Intermediate in Fischer-Tropsch Chemistry on Ruthenium.
    Morgan GA; Sorescu DC; Zubkov T; Yates JT
    J Phys Chem B; 2004 Mar; 108(11):3614-3624. PubMed ID: 28786676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational investigation of the kinetics and mechanism of the initial steps of the Fischer-Tropsch synthesis on cobalt.
    van Helden P; Berg JVD; Petersen MA; Janse van Rensburg W; Ciobîcă IM; van de Loosdrecht J
    Faraday Discuss; 2017 Apr; 197():117-151. PubMed ID: 28186212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium adsorption behavior on hcp cobalt as model systems for the Fischer-Tropsch synthesis: a density functional theory study.
    Chen Q; Svenum IH; Qi Y; Gavrilovic L; Chen D; Holmen A; Blekkan EA
    Phys Chem Chem Phys; 2017 May; 19(19):12246-12254. PubMed ID: 28451667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxylic acid-capped ruthenium nanoparticles: experimental and theoretical case study with ethanoic acid.
    González-Gómez R; Cusinato L; Bijani C; Coppel Y; Lecante P; Amiens C; Del Rosal I; Philippot K; Poteau R
    Nanoscale; 2019 May; 11(19):9392-9409. PubMed ID: 31038521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective hydrogenation of CO on Fe
    Roldan A; de Leeuw NH
    Faraday Discuss; 2017 Apr; 197():325-336. PubMed ID: 28181612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-field theory-based analysis of the adsorption properties of ruthenium nanoparticles.
    Del Rosal I; Mercy M; Gerber IC; Poteau R
    ACS Nano; 2013 Nov; 7(11):9823-35. PubMed ID: 24083468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of selectivity switch in Fischer-Tropsch synthesis over Ru and Rh from first-principles statistical mechanics studies.
    Chen J; Liu ZP
    J Am Chem Soc; 2008 Jun; 130(25):7929-37. PubMed ID: 18507384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Views on Fischer-Tropsch Synthesis.
    Rommens KT; Saeys M
    Chem Rev; 2023 May; 123(9):5798-5858. PubMed ID: 36897768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism and microkinetics of the Fischer-Tropsch reaction.
    van Santen RA; Markvoort AJ; Filot IA; Ghouri MM; Hensen EJ
    Phys Chem Chem Phys; 2013 Oct; 15(40):17038-63. PubMed ID: 24030478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity.
    Anderson RM; Yancey DF; Zhang L; Chill ST; Henkelman G; Crooks RM
    Acc Chem Res; 2015 May; 48(5):1351-7. PubMed ID: 25938976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.