BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27172948)

  • 41. Origin and differentiation of vascular smooth muscle cells.
    Wang G; Jacquet L; Karamariti E; Xu Q
    J Physiol; 2015 Jul; 593(14):3013-30. PubMed ID: 25952975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Convergence of physical and chemical signaling in the modulation of vascular smooth muscle cell cycle and proliferation by fibrillar collagen-regulated P66Shc.
    Yeh YT; Lee CI; Lim SH; Chen LJ; Wang WL; Chuang YJ; Chiu JJ
    Biomaterials; 2012 Oct; 33(28):6728-38. PubMed ID: 22770800
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation and culture of vascular smooth muscle cells from rat placenta.
    He C; Wang M; Yan Z; Zhang S; Liu H
    J Cell Physiol; 2019 Jun; 234(6):7675-7682. PubMed ID: 30478916
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro.
    Nees S; Weiss DR; Senftl A; Knott M; Förch S; Schnurr M; Weyrich P; Juchem G
    Am J Physiol Heart Circ Physiol; 2012 Jan; 302(1):H69-84. PubMed ID: 22037185
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intimal smooth muscle cells of porcine and human coronary artery express S100A4, a marker of the rhomboid phenotype in vitro.
    Brisset AC; Hao H; Camenzind E; Bacchetta M; Geinoz A; Sanchez JC; Chaponnier C; Gabbiani G; Bochaton-Piallat ML
    Circ Res; 2007 Apr; 100(7):1055-62. PubMed ID: 17347479
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modulation of smooth muscle cell proliferation and migration: role of smooth muscle cell heterogeneity.
    Bochaton-Piallat ML; Gabbiani G
    Handb Exp Pharmacol; 2005; (170):645-63. PubMed ID: 16596818
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oncostatin M-enhanced vascular endothelial growth factor expression in human vascular smooth muscle cells involves PI3K-, p38 MAPK-, Erk1/2- and STAT1/STAT3-dependent pathways and is attenuated by interferon-γ.
    Demyanets S; Kaun C; Rychli K; Pfaffenberger S; Kastl SP; Hohensinner PJ; Rega G; Katsaros KM; Afonyushkin T; Bochkov VN; Paireder M; Huk I; Maurer G; Huber K; Wojta J
    Basic Res Cardiol; 2011 Mar; 106(2):217-31. PubMed ID: 21174212
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intracellular calcium transients are necessary for platelet-derived growth factor but not extracellular matrix protein-induced vascular smooth muscle cell migration.
    Hollenbeck ST; Nelson PR; Yamamura S; Faries PL; Liu B; Kent KC
    J Vasc Surg; 2004 Aug; 40(2):351-8. PubMed ID: 15297833
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Guidelines for the isolation and characterization of murine vascular smooth muscle cells. A report from the International Society of Cardiovascular Translational Research.
    Adhikari N; Shekar KC; Staggs R; Win Z; Steucke K; Lin YW; Wei LN; Alford P; Hall JL;
    J Cardiovasc Transl Res; 2015 Apr; 8(3):158-63. PubMed ID: 25788147
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Smooth Muscle Cell Phenotypic Diversity.
    Liu M; Gomez D
    Arterioscler Thromb Vasc Biol; 2019 Sep; 39(9):1715-1723. PubMed ID: 31340668
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation.
    Klein D; Weisshardt P; Kleff V; Jastrow H; Jakob HG; Ergün S
    PLoS One; 2011; 6(5):e20540. PubMed ID: 21637782
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modulation of Smooth Muscle Cell Phenotype for Translation of Tissue-Engineered Vascular Grafts.
    Pineda-Castillo SA; Acar H; Detamore MS; Holzapfel GA; Lee CH
    Tissue Eng Part B Rev; 2023 Oct; 29(5):574-588. PubMed ID: 37166394
    [TBL] [Abstract][Full Text] [Related]  

  • 53. KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis.
    Murgai M; Ju W; Eason M; Kline J; Beury DW; Kaczanowska S; Miettinen MM; Kruhlak M; Lei H; Shern JF; Cherepanova OA; Owens GK; Kaplan RN
    Nat Med; 2017 Oct; 23(10):1176-1190. PubMed ID: 28920957
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation and Culture of Vascular Smooth Muscle Cells from Small and Large Vessels.
    Montezano AC; Lopes RA; Neves KB; Rios F; Touyz RM
    Methods Mol Biol; 2017; 1527():349-354. PubMed ID: 28116729
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tissue Myeloid Progenitors Differentiate into Pericytes through TGF-β Signaling in Developing Skin Vasculature.
    Yamazaki T; Nalbandian A; Uchida Y; Li W; Arnold TD; Kubota Y; Yamamoto S; Ema M; Mukouyama YS
    Cell Rep; 2017 Mar; 18(12):2991-3004. PubMed ID: 28329690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cadherins in vascular smooth muscle cell (patho)biology: Quid nos scimus?
    Frismantiene A; Philippova M; Erne P; Resink TJ
    Cell Signal; 2018 May; 45():23-42. PubMed ID: 29413845
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isolation and functional studies of rat aortic smooth muscle cells.
    Sreejayan N; Yang X
    Methods Mol Med; 2007; 139():283-92. PubMed ID: 18287680
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vascular stem/progenitor cells: functions and signaling pathways.
    Lu W; Li X
    Cell Mol Life Sci; 2018 Mar; 75(5):859-869. PubMed ID: 28956069
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pericytes in Atherosclerosis.
    Summerhill V; Orekhov A
    Adv Exp Med Biol; 2019; 1147():279-297. PubMed ID: 31147883
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vascular smooth muscle cells in cerebral aneurysm pathogenesis.
    Starke RM; Chalouhi N; Ding D; Raper DM; Mckisic MS; Owens GK; Hasan DM; Medel R; Dumont AS
    Transl Stroke Res; 2014 Jun; 5(3):338-46. PubMed ID: 24323713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.