BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27172959)

  • 1. Dorsal Skinfold Chamber Preparation in Mice: Studying Angiogenesis by Intravital Microscopy.
    Sckell A; Leunig M
    Methods Mol Biol; 2016; 1430():251-63. PubMed ID: 27172959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dorsal skinfold chamber: studying angiogenesis by intravital microscopy.
    Sckell A; Leunig M
    Methods Mol Biol; 2009; 467():305-17. PubMed ID: 19301680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dorsal skinfold chamber preparation in mice : studying angiogenesis by intravital microscopy.
    Sckell A; Leunig M
    Methods Mol Med; 2001; 46():95-105. PubMed ID: 21340915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cranial bone window model: studying angiogenesis of primary and secondary bone tumors by intravital microscopy.
    Sckell A; Klenke FM
    Methods Mol Biol; 2009; 467():343-55. PubMed ID: 19301683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viewing the microcirculation through the window: some twenty years experience with the hamster dorsal skinfold chamber.
    Menger MD; Laschke MW; Vollmar B
    Eur Surg Res; 2002; 34(1-2):83-91. PubMed ID: 11867907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice.
    Leunig M; Yuan F; Menger MD; Boucher Y; Goetz AE; Messmer K; Jain RK
    Cancer Res; 1992 Dec; 52(23):6553-60. PubMed ID: 1384965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution Intravital Microscopy of Tumor Angiogenesis.
    Seynhaeve AL; Ten Hagen TL
    Methods Mol Biol; 2016; 1464():115-127. PubMed ID: 27858361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dorsal skinfold chamber: A versatile tool for preclinical research in tissue engineering and regenerative medicine.
    Laschke MW; Menger MD
    Eur Cell Mater; 2016 Sep; 32():202-15. PubMed ID: 27646143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intravital monitoring of microcirculatory and angiogenic response to lactocapromer terpolymer matrix in a wound model.
    Ring A; Tilkorn D; Ottomann C; Geomelas M; Steinstraesser L; Langer S; Goertz O
    Int Wound J; 2011 Apr; 8(2):112-7. PubMed ID: 21306564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiogenesis and vascularization of murine pancreatic islet isografts.
    Vajkoczy P; Menger MD; Simpson E; Messmer K
    Transplantation; 1995 Jul; 60(2):123-7. PubMed ID: 7542814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new model for studying the revascularization of skin grafts in vivo: the role of angiogenesis.
    Lindenblatt N; Calcagni M; Contaldo C; Menger MD; Giovanoli P; Vollmar B
    Plast Reconstr Surg; 2008 Dec; 122(6):1669-1680. PubMed ID: 19050519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic assessment of angiogenesis in renal cell carcinoma spheroids by intravital microscopy.
    Heuser M; Ringert RH; Zoeller G; Hemmerlein B
    J Urol; 2003 Apr; 169(4):1267-70. PubMed ID: 12629340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcirculatory parameters measured in subcutaneous tissue of the mouse using a novel dorsal skinfold chamber.
    Ushiyama A; Yamada S; Ohkubo C
    Microvasc Res; 2004 Sep; 68(2):147-52. PubMed ID: 15313125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dorsal skinfold chamber technique for intravital microscopy in nude mice.
    Lehr HA; Leunig M; Menger MD; Nolte D; Messmer K
    Am J Pathol; 1993 Oct; 143(4):1055-62. PubMed ID: 7692730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new in vivo model using a dorsal skinfold chamber to investigate microcirculation and angiogenesis in diabetic wounds.
    Langer S; Beescho C; Ring A; Dorfmann O; Steinau HU; Spindler N
    GMS Interdiscip Plast Reconstr Surg DGPW; 2016; 5():Doc09. PubMed ID: 26955508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel model for the investigation of orthotopically growing primary and secondary bone tumours using intravital microscopy.
    Klenke FM; Merkle T; Fellenberg J; Abdollahi A; Huber PE; Gebhard MM; Ewerbeck V; Sckell A
    Lab Anim; 2005 Oct; 39(4):377-83. PubMed ID: 16197704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse.
    Vajkoczy P; Schilling L; Ullrich A; Schmiedek P; Menger MD
    J Cereb Blood Flow Metab; 1998 May; 18(5):510-20. PubMed ID: 9591843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo functional and morphological characterization of bone and striated muscle microcirculation in NSG mice.
    Mussawy H; Viezens L; Hauenherm G; Schroeder M; Schaefer C
    PLoS One; 2017; 12(8):e0183186. PubMed ID: 28800593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvascular effects of the low molecular weight heparins in a colorectal xenograft model: an intravital microscopy study.
    Debergh I; Pattyn P; Ceelen W
    J Surg Res; 2015 Apr; 194(2):488-495. PubMed ID: 25466520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putative CD133+ melanoma cancer stem cells induce initial angiogenesis in vivo.
    Zimmerer RM; Matthiesen P; Kreher F; Kampmann A; Spalthoff S; Jehn P; Bittermann G; Gellrich NC; Tavassol F
    Microvasc Res; 2016 Mar; 104():46-54. PubMed ID: 26656667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.