BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27173529)

  • 1. Impact of a pectic polysaccharide on oenin copigmentation mechanism.
    Fernandes A; Brás NF; Oliveira J; Mateus N; de Freitas V
    Food Chem; 2016 Oct; 209():17-26. PubMed ID: 27173529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural features of copigmentation of oenin with different polyphenol copigments.
    Teixeira N; Cruz L; Brás NF; Mateus N; Ramos MJ; de Freitas V
    J Agric Food Chem; 2013 Jul; 61(28):6942-8. PubMed ID: 23829187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrophotometric study of the copigmentation of malvidin 3-O-glucoside with p-coumaric, vanillic and syringic acids.
    Malaj N; De Simone BC; Quartarolo AD; Russo N
    Food Chem; 2013 Dec; 141(4):3614-20. PubMed ID: 23993528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside.
    Fanzone M; González-Manzano S; Pérez-Alonso J; Escribano-Bailón MT; Jofré V; Assof M; Santos-Buelga C
    Food Chem; 2015 May; 175():166-73. PubMed ID: 25577066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of grape pectic polysaccharides on anthocyanins thermostability.
    Fernandes A; Brandão E; Raposo F; Maricato É; Oliveira J; Mateus N; Coimbra MA; de Freitas V
    Carbohydr Polym; 2020 Jul; 239():116240. PubMed ID: 32414436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthocyanin color behavior and stability during storage: effect of intermolecular copigmentation.
    Eiro MJ; Heinonen M
    J Agric Food Chem; 2002 Dec; 50(25):7461-6. PubMed ID: 12452676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment.
    Trouillas P; Sancho-García JC; De Freitas V; Gierschner J; Otyepka M; Dangles O
    Chem Rev; 2016 May; 116(9):4937-82. PubMed ID: 26959943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of a flavan-3-ol substituent on the affinity of anthocyanins (pigments) toward vinylcatechin dimers and proanthocyanidins (copigments).
    Nave F; Brás NF; Cruz L; Teixeira N; Mateus N; Ramos MJ; Di Meo F; Trouillas P; Dangles O; De Freitas V
    J Phys Chem B; 2012 Dec; 116(48):14089-99. PubMed ID: 23131027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of malvidin-3-glucoside and epicatechin interaction on their ability to interact with salivary proline-rich proteins.
    Soares S; Santos Silva M; García-Estévez I; Brandão E; Fonseca F; Ferreira-da-Silva F; Teresa Escribano-Bailón M; Mateus N; de Freitas V
    Food Chem; 2019 Mar; 276():33-42. PubMed ID: 30409602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The color expression of copigmentation between malvidin-3-O-glucoside and three phenolic aldehydes in model solutions: The effects of pH and molar ratio.
    Zhang B; He F; Zhou PP; Liu Y; Duan CQ
    Food Chem; 2016 May; 199():220-8. PubMed ID: 26775964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of high hydrostatic pressure-assisted organic acids on the copigmentation of Vitis amurensis Rupr anthocyanins.
    He Y; Wen L; Yu H; Zheng F; Wang Z; Xu X; Zhang H; Cao Y; Wang B; Chu B; Hao J
    Food Chem; 2018 Dec; 268():15-26. PubMed ID: 30064742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization.
    Tan C; Celli GB; Selig MJ; Abbaspourrad A
    Food Chem; 2018 Oct; 264():342-349. PubMed ID: 29853386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the molecular mechanism of anthocyanin binding to pectin.
    Fernandes A; Brás NF; Mateus N; de Freitas V
    Langmuir; 2014 Jul; 30(28):8516-27. PubMed ID: 24991843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Color and stability of pigments derived from the acetaldehyde-mediated condensation between malvidin 3-O-glucoside and (+)-catechin.
    Escribano-Bailón T; Alvarez-García M; Rivas-Gonzalo JC; Heredia FJ; Santos-Buelga C
    J Agric Food Chem; 2001 Mar; 49(3):1213-7. PubMed ID: 11312838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV-visible spectroscopic investigation of the 8,8-methylmethine catechin-malvidin 3-glucoside pigments in aqueous solution: structural transformations and molecular complexation with chlorogenic acid.
    Dueñas M; Salas E; Cheynier V; Dangles O; Fulcrand H
    J Agric Food Chem; 2006 Jan; 54(1):189-96. PubMed ID: 16390198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of pectin type on the storage stability of black currant (Ribes nigrum L.) anthocyanins in pectic model solutions.
    Buchweitz M; Speth M; Kammerer DR; Carle R
    Food Chem; 2013 Aug; 139(1-4):1168-78. PubMed ID: 23561223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blueberry pectin and increased anthocyanins stability under in vitro digestion.
    Koh J; Xu Z; Wicker L
    Food Chem; 2020 Jan; 302():125343. PubMed ID: 31430630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copigmentation of malvidin-3-O-glucoside with five hydroxybenzoic acids in red wine model solutions: experimental and theoretical investigations.
    Zhang B; Liu R; He F; Zhou PP; Duan CQ
    Food Chem; 2015 Mar; 170():226-33. PubMed ID: 25306339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vinylcatechin dimers are much better copigments for anthocyanins than catechin dimer procyanidin b3.
    Cruz L; Brás NF; Teixeira N; Mateus N; Ramos MJ; Dangles O; De Freitas V
    J Agric Food Chem; 2010 Mar; 58(5):3159-66. PubMed ID: 20131846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grape anthocyanin oligomerization: a putative mechanism for red color stabilization?
    Oliveira J; Brás NF; da Silva MA; Mateus N; Parola AJ; de Freitas V
    Phytochemistry; 2014 Sep; 105():178-85. PubMed ID: 24890388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.