These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 27173532)
1. Impact of the Fenton process in meat digestion as assessed using an in vitro gastro-intestinal model. Oueslati K; de La Pomélie D; Santé-Lhoutellier V; Gatellier P Food Chem; 2016 Oct; 209():43-9. PubMed ID: 27173532 [TBL] [Abstract][Full Text] [Related]
2. Different physicochemical, structural and digestibility characteristics of myofibrillar protein from PSE and normal pork before and after oxidation. Chen L; Li C; Ullah N; Guo Y; Sun X; Wang X; Xu X; Hackman RM; Zhou G; Feng X Meat Sci; 2016 Nov; 121():228-237. PubMed ID: 27348321 [TBL] [Abstract][Full Text] [Related]
3. Stoichio-Kinetic Modeling of Fenton Chemistry in a Meat-Mimetic Aqueous-Phase Medium. Oueslati K; Promeyrat A; Gatellier P; Daudin JD; Kondjoyan A J Agric Food Chem; 2018 Jun; 66(23):5892-5900. PubMed ID: 29782163 [TBL] [Abstract][Full Text] [Related]
4. Effect of in vitro oxidation on the water retention mechanism of myofibrillar proteins gel from pork muscles. Zhang D; Li H; Emara AM; Hu Y; Wang Z; Wang M; He Z Food Chem; 2020 Jun; 315():126226. PubMed ID: 32018081 [TBL] [Abstract][Full Text] [Related]
5. Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Maezono T; Tokumura M; Sekine M; Kawase Y Chemosphere; 2011 Mar; 82(10):1422-30. PubMed ID: 21146853 [TBL] [Abstract][Full Text] [Related]
6. Controlled Cross-Linking with Glucose Oxidase for the Enhancement of Gelling Potential of Pork Myofibrillar Protein. Wang X; Xiong YL; Sato H; Kumazawa Y J Agric Food Chem; 2016 Dec; 64(50):9523-9531. PubMed ID: 27936702 [TBL] [Abstract][Full Text] [Related]
7. Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. Santé-Lhoutellier V; Astruc T; Marinova P; Greve E; Gatellier P J Agric Food Chem; 2008 Feb; 56(4):1488-94. PubMed ID: 18237130 [TBL] [Abstract][Full Text] [Related]
8. Iron Fenton oxidation of 2'-deoxyguanosine in physiological bicarbonate buffer yields products consistent with the reactive oxygen species carbonate radical anion not the hydroxyl radical. Fleming AM; Burrows CJ Chem Commun (Camb); 2020 Aug; 56(68):9779-9782. PubMed ID: 32716425 [TBL] [Abstract][Full Text] [Related]
9. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. Cordeiro RM Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):438-44. PubMed ID: 24095673 [TBL] [Abstract][Full Text] [Related]
10. Proteomic profiling of oxidized cysteine and methionine residues by hydroxyl radicals in myosin of pork. Lu H; Luo Y; Lametsch R Food Chem; 2018 Mar; 243():277-284. PubMed ID: 29146339 [TBL] [Abstract][Full Text] [Related]
11. [Free oxygen radiacals and kidney diseases--part I]. Sakac V; Sakac M Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727 [TBL] [Abstract][Full Text] [Related]
12. Lipid and Protein Oxidation during in Vitro Gastrointestinal Digestion of Pork under Helicobacter pylori Gastritis Conditions. Van Hecke T; Basso V; De Smet S J Agric Food Chem; 2018 Dec; 66(49):13000-13010. PubMed ID: 30411892 [TBL] [Abstract][Full Text] [Related]
13. Effects of Oxidation in Vitro on Structures and Functions of Myofibrillar Protein from Beef Muscles. Fu Q; Liu R; Wang H; Hua C; Song S; Zhou G; Zhang W J Agric Food Chem; 2019 May; 67(20):5866-5873. PubMed ID: 31026156 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios. Fischbacher A; von Sonntag C; Schmidt TC Chemosphere; 2017 Sep; 182():738-744. PubMed ID: 28531840 [TBL] [Abstract][Full Text] [Related]
15. Oxygen Reduction Reaction on Graphene in an Electro-Fenton System: In Situ Generation of H2 O2 for the Oxidation of Organic Compounds. Chen CY; Tang C; Wang HF; Chen CM; Zhang X; Huang X; Zhang Q ChemSusChem; 2016 May; 9(10):1194-9. PubMed ID: 27098063 [TBL] [Abstract][Full Text] [Related]
16. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. Sante-Lhoutellier V; Aubry L; Gatellier P J Agric Food Chem; 2007 Jun; 55(13):5343-8. PubMed ID: 17530859 [TBL] [Abstract][Full Text] [Related]
17. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis. Leonard S; Wang S; Zang L; Castranova V; Vallyathan V; Shi X J Environ Pathol Toxicol Oncol; 2000; 19(1-2):49-60. PubMed ID: 10905508 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation. Fang G; Zhu C; Dionysiou DD; Gao J; Zhou D Bioresour Technol; 2015 Jan; 176():210-7. PubMed ID: 25461005 [TBL] [Abstract][Full Text] [Related]
19. Effects of glutathione on Fenton reagent-dependent radical production and DNA oxidation. Spear N; Aust SD Arch Biochem Biophys; 1995 Dec; 324(1):111-6. PubMed ID: 7503544 [TBL] [Abstract][Full Text] [Related]
20. Hydroxyl radical generation in electro-Fenton process with a gas-diffusion electrode: Linkages with electro-chemical generation of hydrogen peroxide and iron redox cycle. Yatagai T; Ohkawa Y; Kubo D; Kawase Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(1):74-83. PubMed ID: 27726493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]