BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27173544)

  • 1. Classification of maize kernels using NIR hyperspectral imaging.
    Williams PJ; Kucheryavskiy S
    Food Chem; 2016 Oct; 209():131-8. PubMed ID: 27173544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis.
    Williams P; Geladi P; Fox G; Manley M
    Anal Chim Acta; 2009 Oct; 653(2):121-30. PubMed ID: 19808104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of detecting aflatoxin B1 on inoculated maize kernels surface using Vis/NIR hyperspectral imaging.
    Wang W; Heitschmidt GW; Windham WR; Feldner P; Ni X; Chu X
    J Food Sci; 2015 Jan; 80(1):M116-22. PubMed ID: 25495222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Maize Kernel Vigor under Different Accelerated Aging Times Using Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Feng X; He Y
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30477266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of white maize defects with multispectral imaging.
    Sendin K; Manley M; Williams PJ
    Food Chem; 2018 Mar; 243():311-318. PubMed ID: 29146343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.) kernels.
    Manley M; Williams P; Nilsson D; Geladi P
    J Agric Food Chem; 2009 Oct; 57(19):8761-9. PubMed ID: 19728712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Considerations regarding the use of hyperspectral imaging data in classifications of food products, exemplified by analysis of maize kernels.
    Nansen C; Kolomiets M; Gao X
    J Agric Food Chem; 2008 May; 56(9):2933-8. PubMed ID: 18410111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with Aspergillus flavus spores.
    Yao H; Hruska Z; Kincaid R; Brown R; Cleveland T; Bhatnagar D
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May; 27(5):701-9. PubMed ID: 20221935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection.
    Zhou Q; Huang W; Liang D; Tian X
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis.
    Zhang C; Liu F; He Y
    Sci Rep; 2018 Feb; 8(1):2166. PubMed ID: 29391427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of hardness for maize kernels based on hyperspectral imaging.
    Qiao M; Xu Y; Xia G; Su Y; Lu B; Gao X; Fan H
    Food Chem; 2022 Jan; 366():130559. PubMed ID: 34289440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.
    Janni J; Weinstock BA; Hagen L; Wright S
    Appl Spectrosc; 2008 Apr; 62(4):423-6. PubMed ID: 18416901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking diffusion of conditioning water in single wheat kernels of different hardnesses by near infrared hyperspectral imaging.
    Manley M; du Toit G; Geladi P
    Anal Chim Acta; 2011 Feb; 686(1-2):64-75. PubMed ID: 21237309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variety Identification of Raisins Using Near-Infrared Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Gao P; He Y
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30412997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of maize ( Zea mays ) kernel density and volume using microcomputed tomography and single-kernel near-infrared spectroscopy.
    Gustin JL; Jackson S; Williams C; Patel A; Armstrong P; Peter GF; Settles AM
    J Agric Food Chem; 2013 Nov; 61(46):10872-80. PubMed ID: 24143871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of near-infrared hyperspectral imaging to discriminate different geographical origins of Chinese wolfberries.
    Yin W; Zhang C; Zhu H; Zhao Y; He Y
    PLoS One; 2017; 12(7):e0180534. PubMed ID: 28704423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein content prediction in single wheat kernels using hyperspectral imaging.
    Caporaso N; Whitworth MB; Fisk ID
    Food Chem; 2018 Feb; 240():32-42. PubMed ID: 28946278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of oat and groat kernels using NIR hyperspectral imaging.
    Serranti S; Cesare D; Marini F; Bonifazi G
    Talanta; 2013 Jan; 103():276-84. PubMed ID: 23200388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel high-throughput hyperspectral scanner and analytical methods for predicting maize kernel composition and physical traits.
    Varela JI; Miller ND; Infante V; Kaeppler SM; de Leon N; Spalding EP
    Food Chem; 2022 Oct; 391():133264. PubMed ID: 35643019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Nondestructive identification of different oil content maize kernels by near-infrared spectra].
    Zhang Y; Zhang LD; Bai QL; Chen SJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):686-9. PubMed ID: 19455800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.