BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27173544)

  • 21. Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting.
    Zhou Q; Huang W; Tian X; Yang Y; Liang D
    J Sci Food Agric; 2021 Aug; 101(11):4532-4542. PubMed ID: 33452811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of oil and oleic acid concentrations in individual corn (Zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis.
    Weinstock BA; Janni J; Hagen L; Wright S
    Appl Spectrosc; 2006 Jan; 60(1):9-16. PubMed ID: 16454902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Maize seed identification using hyperspectral imaging and SVDD algorithm].
    Zhu QB; Feng ZL; Huang M; Zhu X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Feb; 33(2):517-21. PubMed ID: 23697145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selection of haploid maize kernels from hybrid kernels for plant breeding using near-infrared spectroscopy and SIMCA analysis.
    Jones RW; Reinot T; Frei UK; Tseng Y; Lübberstedt T; McClelland JF
    Appl Spectrosc; 2012 Apr; 66(4):447-50. PubMed ID: 22449327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-destructive classification and prediction of aflatoxin-B1 concentration in maize kernels using Vis-NIR (400-1000 nm) hyperspectral imaging.
    Chakraborty SK; Mahanti NK; Mansuri SM; Tripathi MK; Kotwaliwale N; Jayas DS
    J Food Sci Technol; 2021 Feb; 58(2):437-450. PubMed ID: 33568838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of near-infrared hyperspectral (NIR) images combined with multivariate image analysis in the differentiation of two mycotoxicogenic Fusarium species associated with maize.
    da Conceição RRP; Simeone MLF; Queiroz VAV; de Medeiros EP; de Araújo JB; Coutinho WM; da Silva DD; de Araújo Miguel R; de Paula Lana UG; de Resende Stoianoff MA
    Food Chem; 2021 May; 344():128615. PubMed ID: 33223289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pixel-level aflatoxin detecting in maize based on feature selection and hyperspectral imaging.
    Gao J; Ni J; Wang D; Deng L; Li J; Han Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118269. PubMed ID: 32217452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discrimination of Transgenic Maize Kernel Using NIR Hyperspectral Imaging and Multivariate Data Analysis.
    Feng X; Zhao Y; Zhang C; Cheng P; He Y
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28817075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early detection of toxigenic fungi on maize by hyperspectral imaging analysis.
    Del Fiore A; Reverberi M; Ricelli A; Pinzari F; Serranti S; Fabbri AA; Bonifazi G; Fanelli C
    Int J Food Microbiol; 2010 Nov; 144(1):64-71. PubMed ID: 20869132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping of leaf water content using near-infrared hyperspectral imaging.
    Higa S; Kobori H; Tsuchikawa S
    Appl Spectrosc; 2013 Nov; 67(11):1302-7. PubMed ID: 24160882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Utilization of spectral-spatial characteristics in shortwave infrared hyperspectral images to classify and identify fungi-contaminated peanuts.
    Qiao X; Jiang J; Qi X; Guo H; Yuan D
    Food Chem; 2017 Apr; 220():393-399. PubMed ID: 27855916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy.
    Berardo N; Pisacane V; Battilani P; Scandolara A; Pietri A; Marocco A
    J Agric Food Chem; 2005 Oct; 53(21):8128-34. PubMed ID: 16218654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of pregerminated barley using hyperspectral image analysis.
    Arngren M; Hansen PW; Eriksen B; Larsen J; Larsen R
    J Agric Food Chem; 2011 Nov; 59(21):11385-94. PubMed ID: 21932866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Maize Hybrid Seed Purity Identification Based on Near Infrared Reflectance (NIR) and Transmittance (NIT) Spectra].
    Li TX; Jia SQ; Liu X; Zhao SY; Ran H; Yan YL; An D
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3388-92. PubMed ID: 26964215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Method for Identifying Maize Haploid Seeds by Applying Diffuse Transmission Near-Infrared Spectroscopy.
    Lin J; Yu L; Li W; Qin H
    Appl Spectrosc; 2018 Apr; 72(4):611-617. PubMed ID: 29286829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How to predict the sugariness and hardness of melons: A near-infrared hyperspectral imaging method.
    Sun M; Zhang D; Liu L; Wang Z
    Food Chem; 2017 Mar; 218():413-421. PubMed ID: 27719929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth characteristics of three Fusarium species evaluated by near-infrared hyperspectral imaging and multivariate image analysis.
    Williams PJ; Geladi P; Britz TJ; Manley M
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):803-13. PubMed ID: 22961391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo detection of atherosclerotic plaque using non-contact and label-free near-infrared hyperspectral imaging.
    Chihara H; Oishi N; Ishii A; Munemitsu T; Arai D; Ikeda H; Miyamoto S
    Atherosclerosis; 2016 Jul; 250():106-13. PubMed ID: 27205867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NIR Hyperspectral Imaging Technology Combined with Multivariate Methods to Study the Residues of Different Concentrations of Omethoate on Wheat Grain Surface.
    Zhang L; Rao Z; Ji H
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of Rapid Visco Analyser (RVA) viscograms and chemometrics for maize hardness characterisation.
    Guelpa A; Bevilacqua M; Marini F; O'Kennedy K; Geladi P; Manley M
    Food Chem; 2015 Apr; 173():1220-7. PubMed ID: 25466147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.