These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 27173583)

  • 1. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.
    Ye Y; Kirkham-McCarthy L; Lahue RS
    DNA Repair (Amst); 2016 Jul; 43():1-8. PubMed ID: 27173583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The characterization of Saccharomyces cerevisiae Mre11/Rad50/Xrs2 complex reveals that Rad50 negatively regulates Mre11 endonucleolytic but not the exonucleolytic activity.
    Ghosal G; Muniyappa K
    J Mol Biol; 2007 Sep; 372(4):864-882. PubMed ID: 17698079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xrs2 Dependent and Independent Functions of the Mre11-Rad50 Complex.
    Oh J; Al-Zain A; Cannavo E; Cejka P; Symington LS
    Mol Cell; 2016 Oct; 64(2):405-415. PubMed ID: 27746018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S. cerevisiae Mre11 recruits conjugated SUMO moieties to facilitate the assembly and function of the Mre11-Rad50-Xrs2 complex.
    Chen YJ; Chuang YC; Chuang CN; Cheng YH; Chang CR; Leng CH; Wang TF
    Nucleic Acids Res; 2016 Mar; 44(5):2199-213. PubMed ID: 26743002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing of DNA double-stranded breaks and intermediates of recombination and repair by Saccharomyces cerevisiae Mre11 and its stimulation by Rad50, Xrs2, and Sae2 proteins.
    Ghodke I; Muniyappa K
    J Biol Chem; 2013 Apr; 288(16):11273-86. PubMed ID: 23443654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae.
    Smith S; Gupta A; Kolodner RD; Myung K
    DNA Repair (Amst); 2005 May; 4(5):606-17. PubMed ID: 15811632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends.
    Trujillo KM; Roh DH; Chen L; Van Komen S; Tomkinson A; Sung P
    J Biol Chem; 2003 Dec; 278(49):48957-64. PubMed ID: 14522986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae.
    Daee DL; Mertz T; Lahue RS
    Mol Cell Biol; 2007 Jan; 27(1):102-10. PubMed ID: 17060452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Role for the Mre11-Rad50-Xrs2 Complex in Gene Expression and Chromosome Organization.
    Forey R; Barthe A; Tittel-Elmer M; Wery M; Barrault MB; Ducrot C; Seeber A; Krietenstein N; Szachnowski U; Skrzypczak M; Ginalski K; Rowicka M; Cobb JA; Rando OJ; Soutourina J; Werner M; Dubrana K; Gasser SM; Morillon A; Pasero P; Lengronne A; Poli J
    Mol Cell; 2021 Jan; 81(1):183-197.e6. PubMed ID: 33278361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Separation of Sae2 Nuclease Activity from Mre11 Nuclease Functions in Budding Yeast.
    Arora S; Deshpande RA; Budd M; Campbell J; Revere A; Zhang X; Schmidt KH; Paull TT
    Mol Cell Biol; 2017 Dec; 37(24):. PubMed ID: 28970327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sae2 promotes DNA damage resistance by removing the Mre11-Rad50-Xrs2 complex from DNA and attenuating Rad53 signaling.
    Chen H; Donnianni RA; Handa N; Deng SK; Oh J; Timashev LA; Kowalczykowski SC; Symington LS
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):E1880-7. PubMed ID: 25831494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex.
    Richard GF; Goellner GM; McMurray CT; Haber JE
    EMBO J; 2000 May; 19(10):2381-90. PubMed ID: 10811629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRX protects telomeric DNA at uncapped telomeres of budding yeast cdc13-1 mutants.
    Foster SS; Zubko MK; Guillard S; Lydall D
    DNA Repair (Amst); 2006 Jul; 5(7):840-51. PubMed ID: 16765654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The MRX complex regulates Exo1 resection activity by altering DNA end structure.
    Gobbini E; Cassani C; Vertemara J; Wang W; Mambretti F; Casari E; Sung P; Tisi R; Zampella G; Longhese MP
    EMBO J; 2018 Aug; 37(16):. PubMed ID: 29925516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function relationships of the Mre11 protein in the control of DNA end bridging and processing.
    Marsella A; Cassani C; Casari E; Tisi R; Longhese MP
    Curr Genet; 2019 Feb; 65(1):11-16. PubMed ID: 29922906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae.
    Zhang X; Paull TT
    DNA Repair (Amst); 2005 Nov; 4(11):1281-94. PubMed ID: 16043424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 9-1-1 Complex Controls Mre11 Nuclease and Checkpoint Activation during Short-Range Resection of DNA Double-Strand Breaks.
    Gobbini E; Casari E; Colombo CV; Bonetti D; Longhese MP
    Cell Rep; 2020 Oct; 33(3):108287. PubMed ID: 33086066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sae2 controls Mre11 endo- and exonuclease activities by different mechanisms.
    Tamai T; Reginato G; Ojiri R; Morita I; Avrutis A; Cejka P; Shinohara M; Sugimoto K
    Nat Commun; 2024 Aug; 15(1):7221. PubMed ID: 39174552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structurally distinct Mre11 domains mediate MRX functions in resection, end-tethering and DNA damage resistance.
    Cassani C; Gobbini E; Vertemara J; Wang W; Marsella A; Sung P; Tisi R; Zampella G; Longhese MP
    Nucleic Acids Res; 2018 Apr; 46(6):2990-3008. PubMed ID: 29420790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nej1 Interacts with Mre11 to Regulate Tethering and Dna2 Binding at DNA Double-Strand Breaks.
    Mojumdar A; Sorenson K; Hohl M; Toulouze M; Lees-Miller SP; Dubrana K; Petrini JHJ; Cobb JA
    Cell Rep; 2019 Aug; 28(6):1564-1573.e3. PubMed ID: 31390569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.