These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27173755)

  • 21. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change.
    Hurlbert AH; Liang Z
    PLoS One; 2012; 7(2):e31662. PubMed ID: 22384050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autumn bird migration phenology: A potpourri of wind, precipitation and temperature effects.
    Haest B; Hüppop O; van de Pol M; Bairlein F
    Glob Chang Biol; 2019 Dec; 25(12):4064-4080. PubMed ID: 31273866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird.
    Shutt JD; Cabello IB; Keogan K; Leech DI; Samplonius JM; Whittle L; Burgess MD; Phillimore AB
    Proc Biol Sci; 2019 Aug; 286(1908):20190952. PubMed ID: 31409248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local temperatures predict breeding phenology but do not result in breeding synchrony among a community of resident cavity-nesting birds.
    Drake A; Martin K
    Sci Rep; 2018 Feb; 8(1):2756. PubMed ID: 29426927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissecting the contributions of plasticity and local adaptation to the phenology of a butterfly and its host plants.
    Phillimore AB; Stålhandske S; Smithers RJ; Bernard R
    Am Nat; 2012 Nov; 180(5):655-70. PubMed ID: 23070325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species' range: Modeling diameter-growth cessation in coast Douglas-fir.
    Ford KR; Harrington CA; St Clair JB
    Glob Chang Biol; 2017 Aug; 23(8):3348-3362. PubMed ID: 28303652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Challenging a 15-year-old claim: The North Atlantic Oscillation index as a predictor of spring migration phenology of birds.
    Haest B; Hüppop O; Bairlein F
    Glob Chang Biol; 2018 Apr; 24(4):1523-1537. PubMed ID: 29251800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial and temporal shifts in photoperiod with climate change.
    Ettinger AK; Buonaiuto DM; Chamberlain CJ; Morales-Castilla I; Wolkovich EM
    New Phytol; 2021 Apr; 230(2):462-474. PubMed ID: 33421152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of climate on the timing and rate of spring bird migration.
    Marra PP; Francis CM; Mulvihill RS; Moore FR
    Oecologia; 2005 Jan; 142(2):307-15. PubMed ID: 15480801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental controls on the phenology of moths: predicting plasticity and constraint under climate change.
    Valtonen A; Ayres MP; Roininen H; Pöyry J; Leinonen R
    Oecologia; 2011 Jan; 165(1):237-48. PubMed ID: 20882390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis.
    Peterson ML; Doak DF; Morris WF
    Glob Chang Biol; 2018 Apr; 24(4):1614-1625. PubMed ID: 29155464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenological responses of 215 moth species to interannual climate variation in the Pacific Northwest from 1895 through 2013.
    Maurer JA; Shepard JH; Crabo LG; Hammond PC; Zack RS; Peterson MA
    PLoS One; 2018; 13(9):e0202850. PubMed ID: 30208046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amphibian breeding phenology trends under climate change: predicting the past to forecast the future.
    Green DM
    Glob Chang Biol; 2017 Feb; 23(2):646-656. PubMed ID: 27273300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa.
    Mazer SJ; Travers SE; Cook BI; Davies TJ; Bolmgren K; Kraft NJ; Salamin N; Inouye DW
    Am J Bot; 2013 Jul; 100(7):1381-97. PubMed ID: 23752756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.
    Jones NT; Gilbert B
    J Anim Ecol; 2016 Mar; 85(2):559-69. PubMed ID: 26590065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling the effects of climate change-induced shifts in reproductive phenology on temperature-dependent traits.
    Telemeco RS; Abbott KC; Janzen FJ
    Am Nat; 2013 May; 181(5):637-48. PubMed ID: 23594547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Earlier nesting by generalist predatory bird is associated with human responses to climate change.
    Smith SH; Steenhof K; McClure CJ; Heath JA
    J Anim Ecol; 2017 Jan; 86(1):98-107. PubMed ID: 27871118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parameterization of temperature sensitivity of spring phenology and its application in explaining diverse phenological responses to temperature change.
    Wang H; Ge Q; Rutishauser T; Dai Y; Dai J
    Sci Rep; 2015 Mar; 5():8833. PubMed ID: 25743934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model approach to project the start of egg laying of Great Tit (Parus major L.) in response to climate change.
    Chmielewski FM; Blümel K; Scherbaum-Heberer C; Koppmann-Rumpf B; Schmidt KH
    Int J Biometeorol; 2013 Mar; 57(2):287-97. PubMed ID: 22588698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.