These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 27173917)

  • 1. Competition between hydrogen bonding and protein aggregation in neuronal-like cells under exposure to 50 Hz magnetic field.
    Calabrò E
    Int J Radiat Biol; 2016 Jul; 92(7):395-403. PubMed ID: 27173917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared spectroscopic demonstration of magnetic orientation in SH-SY5Y neuronal-like cells induced by static or 50 Hz magnetic fields.
    Calabrò E; Magazù S
    Int J Radiat Biol; 2019 Jun; 95(6):781-787. PubMed ID: 30668250
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells.
    Calabrò E; Condello S; Currò M; Ferlazzo N; Caccamo D; Magazù S; Ientile R
    Bioelectromagnetics; 2013 Dec; 34(8):618-29. PubMed ID: 24217848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 50 Hz electromagnetic field produced changes in FTIR spectroscopy associated with mitochondrial transmembrane potential reduction in neuronal-like SH-SY5Y cells.
    Calabrò E; Condello S; Currò M; Ferlazzo N; Vecchio M; Caccamo D; Magazù S; Ientile R
    Oxid Med Cell Longev; 2013; 2013():414393. PubMed ID: 23970948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome aberration in typical biological systems under exposure to low- and high-intensity magnetic fields.
    Calabrò E; Goswami HK; Magazù S
    Electromagn Biol Med; 2020 Apr; 39(2):97-108. PubMed ID: 32138556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of p21 level and cell cycle distribution by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells.
    Luukkonen J; Höytö A; Sokka M; Liimatainen A; Syväoja J; Juutilainen J; Naarala J
    Int J Radiat Biol; 2017 Feb; 93(2):240-248. PubMed ID: 27646005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of 50 Hz magnetic field exposure on DNA damage and cellular functions in various neurogenic cells.
    Su L; Yimaer A; Wei X; Xu Z; Chen G
    J Radiat Res; 2017 Jul; 58(4):474-486. PubMed ID: 28369556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure to a 50-Hz magnetic field induced ceramide generation in cultured cells.
    Qiu L; Feng B; Ni Z; Wu X; Sun W
    Int J Radiat Biol; 2016; 92(4):215-21. PubMed ID: 26887861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular detection of 50 Hz magnetic fields and weak blue light: effects on superoxide levels and genotoxicity.
    Höytö A; Herrala M; Luukkonen J; Juutilainen J; Naarala J
    Int J Radiat Biol; 2017 Jun; 93(6):646-652. PubMed ID: 28264623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of Cultured Neuronal Network Activity After High-Intensity Power Frequency Magnetic Field Exposure.
    Saito A; Takahashi M; Makino K; Suzuki Y; Jimbo Y; Nakasono S
    Front Physiol; 2018; 9():189. PubMed ID: 29662453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ELF magnetic field on membrane protein structure of living HeLa cells studied by Fourier transform infrared spectroscopy.
    Ikehara T; Yamaguchi H; Hosokawa K; Miyamoto H; Aizawa K
    Bioelectromagnetics; 2003 Oct; 24(7):457-64. PubMed ID: 12955750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH oxidase-produced superoxide mediated a 50-Hz magnetic field-induced epidermal growth factor receptor clustering.
    Feng B; Dai A; Chen L; Qiu L; Fu Y; Sun W
    Int J Radiat Biol; 2016 Oct; 92(10):596-602. PubMed ID: 27442448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of extremely low-frequency magnetic fields on the response of a conductance-based neuron model.
    Yi G; Wang J; Wei X; Deng B; Tsang KM; Chan WL; Han C
    Int J Neural Syst; 2014 Feb; 24(1):1450007. PubMed ID: 24344694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway.
    Feng B; Qiu L; Ye C; Chen L; Fu Y; Sun W
    Int J Radiat Biol; 2016; 92(3):148-55. PubMed ID: 26850078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The α-helix alignment of proteins in water solution toward a high-frequency electromagnetic field: A FTIR spectroscopy study.
    Calabrò E; Magazù S
    Electromagn Biol Med; 2017; 36(3):279-288. PubMed ID: 28632082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced-orientation of nitrogen monoxide and azide ion vibrations in human hemoglobin in bidistilled water solution under a static magnetic field.
    Calabrò E; Magazù S
    Bioelectromagnetics; 2017 Sep; 38(6):447-455. PubMed ID: 28453873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of extremely low frequency magnetic field on total protein and -sh groups concentrations in liver homogenates].
    Ciejka E; Kowalczyk A; Gorąca A
    Med Pr; 2014; 65(5):639-44. PubMed ID: 25812392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of extremely low frequency magnetic field on oxidative balance in brain of rats.
    Ciejka E; Kleniewska P; Skibska B; Goraca A
    J Physiol Pharmacol; 2011 Dec; 62(6):657-61. PubMed ID: 22314568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FTIR spectroscopy studies on the bioprotective effectiveness of trehalose on human hemoglobin aqueous solutions under 50 Hz electromagnetic field exposure.
    Magazù S; Calabrò E; Campo S
    J Phys Chem B; 2010 Sep; 114(37):12144-9. PubMed ID: 20799749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental effects of low frequency magnetic fields on P19-derived neuronal cells.
    Saito A; Takayama Y; Moriguchi H; Kotani K; Jimbo Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5942-5. PubMed ID: 19965063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.