These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 27174091)
1. The effect of rhododendrol inhibition of NF-κB on melanocytes in the presence of tyrosinase. Arase N; Yang L; Tanemura A; Yang F; Suenaga T; Arase H; Katayama I J Dermatol Sci; 2016 Aug; 83(2):157-9. PubMed ID: 27174091 [No Abstract] [Full Text] [Related]
2. Immunohistopathological analysis of frizzled-4-positive immature melanocytes from hair follicles of patients with Rhododenol-induced leukoderma. Okamura K; Ohe R; Abe Y; Ueki M; Hozumi Y; Tamiya G; Matsunaga K; Yamakawa M; Suzuki T J Dermatol Sci; 2015 Nov; 80(2):156-8. PubMed ID: 26277630 [No Abstract] [Full Text] [Related]
3. Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism. Sasaki M; Kondo M; Sato K; Umeda M; Kawabata K; Takahashi Y; Suzuki T; Matsunaga K; Inoue S Pigment Cell Melanoma Res; 2014 Sep; 27(5):754-63. PubMed ID: 24890809 [TBL] [Abstract][Full Text] [Related]
4. Immunohistochemical analysis of rhododendrol-induced leukoderma in improved and aggravated cases. Yasuda M; Sekiguchi A; Kishi C; Toki S; Arase N; Takahashi A; Yang F; Tanemura A; Hayashi M; Abe Y; Hamada T; Suzuki T; Katayama I; Ishikawa O J Dermatol Sci; 2020 Aug; 99(2):140-143. PubMed ID: 32653297 [No Abstract] [Full Text] [Related]
5. Biochemical, cytological, and immunological mechanisms of rhododendrol-induced leukoderma. Tokura Y; Fujiyama T; Ikeya S; Tatsuno K; Aoshima M; Kasuya A; Ito T J Dermatol Sci; 2015 Mar; 77(3):146-9. PubMed ID: 25726326 [TBL] [Abstract][Full Text] [Related]
6. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity. Ito S; Ojika M; Yamashita T; Wakamatsu K Pigment Cell Melanoma Res; 2014 Sep; 27(5):744-53. PubMed ID: 24903082 [TBL] [Abstract][Full Text] [Related]
7. Depigmentation caused by application of the active brightening material, rhododendrol, is related to tyrosinase activity at a certain threshold. Kasamatsu S; Hachiya A; Nakamura S; Yasuda Y; Fujimori T; Takano K; Moriwaki S; Hase T; Suzuki T; Matsunaga K J Dermatol Sci; 2014 Oct; 76(1):16-24. PubMed ID: 25082450 [TBL] [Abstract][Full Text] [Related]
8. Rhododenol-induced leukoderma in a mouse model mimicking Japanese skin. Abe Y; Okamura K; Kawaguchi M; Hozumi Y; Aoki H; Kunisada T; Ito S; Wakamatsu K; Matsunaga K; Suzuki T J Dermatol Sci; 2016 Jan; 81(1):35-43. PubMed ID: 26547111 [TBL] [Abstract][Full Text] [Related]
9. Substantial evidence for the rhododendrol-induced generation of hydroxyl radicals that causes melanocyte cytotoxicity and induces chemical leukoderma. Gabe Y; Miyaji A; Kohno M; Hachiya A; Moriwaki S; Baba T J Dermatol Sci; 2018 Sep; 91(3):311-316. PubMed ID: 30005897 [TBL] [Abstract][Full Text] [Related]
10. Rhododendrol-induced leukoderma accompanied by allergic contact dermatitis caused by a non-rhododendrol skin-lightening agent, 5,5'-dipropylbiphenyl-2,2'-diol. Yagami A; Suzuki K; Sano A; Takahashi M; Kobayashi T; Morita Y; Ando A; Iwata Y; Matsunaga K J Dermatol; 2015 Jul; 42(7):739-40. PubMed ID: 25875673 [No Abstract] [Full Text] [Related]
11. Biochemical Mechanism of Rhododendrol-Induced Leukoderma. Ito S; Wakamatsu K Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29439519 [No Abstract] [Full Text] [Related]
12. Upregulation of CD86 and IL-12 by rhododendrol in THP-1 cells cocultured with melanocytes through ROS and ATP. Katahira Y; Sakamoto E; Watanabe A; Furusaka Y; Inoue S; Hasegawa H; Mizoguchi I; Yo K; Yamaji F; Toyoda A; Yoshimoto T J Dermatol Sci; 2022 Dec; 108(3):167-177. PubMed ID: 36610941 [TBL] [Abstract][Full Text] [Related]
13. Glutathione maintenance is crucial for survival of melanocytes after exposure to rhododendrol. Kondo M; Kawabata K; Sato K; Yamaguchi S; Hachiya A; Takahashi Y; Inoue S Pigment Cell Melanoma Res; 2016 Sep; 29(5):541-9. PubMed ID: 27223685 [TBL] [Abstract][Full Text] [Related]
14. Autoantibodies detected in patients with vitiligo vulgaris but not in those with rhododendrol-induced leukoderma. Arase N; Tanemura A; Jin H; Nishioka M; Aoyama Y; Oiso N; Matsunaga K; Suzuki T; Nishigori C; Kawamura T; Shimizu T; Ito A; Fukai K; Abe Y; Yang L; Tsuruta D; Takeoka K; Iwatani Y; Hidaka Y; Nishida M; Yamauchi-Takihara K; Arase H; Fujimoto M; Katayama I J Dermatol Sci; 2019 Aug; 95(2):80-83. PubMed ID: 31399283 [No Abstract] [Full Text] [Related]
15. Suppression of melanin synthesis by Americanin A in melan-a cells via regulation of microphthalmia-associated transcription factor. Shin Y; Jang EJ; Park HJ; Hong JY; Kang SS; Lee SK Exp Dermatol; 2016 Aug; 25(8):646-7. PubMed ID: 26997427 [No Abstract] [Full Text] [Related]
16. Inhibition of melanin content by Punicalagins in the super fruit pomegranate (Punica granatum). Rana J; Diwakar G; Saito L; Scholten JD; Mulder T J Cosmet Sci; 2013; 64(6):445-53. PubMed ID: 24397882 [TBL] [Abstract][Full Text] [Related]
17. Kojic acid alters pheomelanin content in human induced pluripotent stem cell-derived melanocytes. Miyabe C; Dong Y; Wakamatsu K; Ito S; Kawakami T J Dermatol; 2020 Apr; 47(4):435-436. PubMed ID: 32067265 [No Abstract] [Full Text] [Related]
18. Efficacy of oral cholecalciferol on rhododendrol-induced vitiligo: A blinded randomized clinical trial. Watabe A; Yamasaki K; Asano M; Kanbayashi Y; Nasu-Tamabuchi M; Terui H; Furudate S; Kakizaki A; Tsuchiyama K; Kimura Y; Ito Y; Kikuchi K; Aiba S J Dermatol; 2018 Apr; 45(4):456-462. PubMed ID: 29399865 [TBL] [Abstract][Full Text] [Related]
19. 4-(4-hydroroxyphenyl)-2-butanol (rhododendrol) activates the autophagy-lysosome pathway in melanocytes: insights into the mechanisms of rhododendrol-induced leukoderma. Yang L; Yang F; Wataya-Kaneda M; Tanemura A; Tsuruta D; Katayama I J Dermatol Sci; 2015 Mar; 77(3):182-5. PubMed ID: 25680854 [No Abstract] [Full Text] [Related]
20. Acanthoic acid inhibits melanogenesis through tyrosinase downregulation and melanogenic gene expression in B16 melanoma cells. Yoon WJ; Ham YM; Yoon HS; Lee WJ; Lee NH; Hyun CG Nat Prod Commun; 2013 Oct; 8(10):1359-62. PubMed ID: 24354173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]