These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27174385)

  • 1. Continuous In-Stream Assimilatory Nitrate Uptake from High-Frequency Sensor Measurements.
    Rode M; Halbedel Née Angelstein S; Anis MR; Borchardt D; Weitere M
    Environ Sci Technol; 2016 Jun; 50(11):5685-94. PubMed ID: 27174385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrate uptake in an agricultural stream estimated from high-frequency, in-situ sensors.
    Jones CS; Kim SW; Wilton TF; Schilling KE; Davis CA
    Environ Monit Assess; 2018 Mar; 190(4):226. PubMed ID: 29550885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 15N-Nitrate signature in low-order streams: effects of land cover and agricultural practices.
    Lefebvre S; Clément JC; Pinay G; Thenail C; Durand P; Marmonier P
    Ecol Appl; 2007 Dec; 17(8):2333-46. PubMed ID: 18213973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya.
    Jacobs SR; Breuer L; Butterbach-Bahl K; Pelster DE; Rufino MC
    Sci Total Environ; 2017 Dec; 603-604():519-532. PubMed ID: 28645050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autotrophic nitrate uptake in river networks: A modeling approach using continuous high-frequency data.
    Yang X; Jomaa S; Büttner O; Rode M
    Water Res; 2019 Jun; 157():258-268. PubMed ID: 30959329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving nitrate load estimates in an agricultural catchment using Event Response Reconstruction.
    Jomaa S; Aboud I; Dupas R; Yang X; Rozemeijer J; Rode M
    Environ Monit Assess; 2018 May; 190(6):330. PubMed ID: 29732470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green light: gross primary production influences seasonal stream N export by controlling fine-scale N dynamics.
    Lupon A; Martí E; Sabater F; Bernal S
    Ecology; 2016 Jan; 97(1):133-44. PubMed ID: 27008783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denitrification in nitrate-rich streams: application of N2:Ar and 15N-tracer methods in intact cores.
    Smith LK; Voytek MA; Böhlke JK; Harvey JW
    Ecol Appl; 2006 Dec; 16(6):2191-207. PubMed ID: 17205897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-isotope ((15)N, (18)O and (13)C) indicators of sources and fate of nitrate in the upper stream of Chaobai River, Beijing, China.
    Li C; Jiang Y; Guo X; Cao Y; Ji H
    Environ Sci Process Impacts; 2014 Nov; 16(11):2644-55. PubMed ID: 25283837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-stream response to nitrate loading in three streams draining agricultural landscapes.
    Duff JH; Tesoriero AJ; Richardson WB; Strauss EA; Munn MD
    J Environ Qual; 2008; 37(3):1133-44. PubMed ID: 18453433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed.
    Ji X; Xie R; Hao Y; Lu J
    Environ Pollut; 2017 Oct; 229():586-594. PubMed ID: 28689147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of nitrate-nitrogen concentration in groundwater to stream water in an agricultural head watershed.
    Lee CM; Hamm SY; Cheong JY; Kim K; Yoon H; Kim M; Kim J
    Environ Res; 2020 May; 184():109313. PubMed ID: 32151840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of continuous monitoring to assess stream nitrate flux and transformation patterns.
    Jones C; Kim SW; Schilling K
    Environ Monit Assess; 2017 Jan; 189(1):35. PubMed ID: 28013474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stream-aquifer and in-stream processes affecting nitrogen along a major river and contributing tributary.
    Huizenga A; Bailey RT; Gates TK
    J Contam Hydrol; 2017 Apr; 199():24-35. PubMed ID: 28342549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metolachlor metabolite (MESA) reveals agricultural nitrate-N fate and transport in Choptank River watershed.
    McCarty GW; Hapeman CJ; Rice CP; Hively WD; McConnell LL; Sadeghi AM; Lang MW; Whitall DR; Bialek K; Downey P
    Sci Total Environ; 2014 Mar; 473-474():473-82. PubMed ID: 24388901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling High-Frequency Stream Metabolism and Nutrient Monitoring to Explore Biogeochemical Controls on Downstream Nitrate Delivery.
    Jarvie HP; Sharpley AN; Kresse T; Hays PD; Williams RJ; King SM; Berry LG
    Environ Sci Technol; 2018 Dec; 52(23):13708-13717. PubMed ID: 30376311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Point-source effects on N and P uptake in a forested and an agricultural Mediterranean streams.
    Merseburger G; Martí E; Sabater F; Ortiz JD
    Sci Total Environ; 2011 Feb; 409(5):957-67. PubMed ID: 21185586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Denitrification and total nitrate uptake in streams of a tropical landscape.
    Potter JD; McDowell WH; Merriam JL; Peterson BJ; Thomas SM
    Ecol Appl; 2010 Dec; 20(8):2104-15. PubMed ID: 21265445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration.
    Hayakawa A; Shimizu M; Woli KP; Kuramochi K; Hatano R
    J Environ Qual; 2006; 35(2):617-27. PubMed ID: 16510707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.