BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27174416)

  • 1. Covalent bonding modulated graphene-metal interfacial thermal transport.
    Jiang T; Zhang X; Vishwanath S; Mu X; Kanzyuba V; Sokolov DA; Ptasinska S; Go DB; Xing HG; Luo T
    Nanoscale; 2016 Jun; 8(21):10993-1001. PubMed ID: 27174416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces.
    Lin S; Buehler MJ
    Nanotechnology; 2013 Apr; 24(16):165702. PubMed ID: 23535514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions.
    Yang H; Tang Y; Yang P
    Nanoscale; 2019 Aug; 11(30):14155-14163. PubMed ID: 31334741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization.
    Hopkins PE; Baraket M; Barnat EV; Beechem TE; Kearney SP; Duda JC; Robinson JT; Walton SG
    Nano Lett; 2012 Feb; 12(2):590-5. PubMed ID: 22214512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimodal Control of Heat Transport at Graphene-Metal Interfaces Using Disorder in Graphene.
    Kim J; Khan ME; Ko JH; Kim JH; Lee ES; Suh J; Wu J; Kim YH; Park JY; Lyeo HK
    Sci Rep; 2016 Oct; 6():34428. PubMed ID: 27698372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating thermal conductance across the metal/graphene/SiO
    Zhao Y; Tao Y; Xu W; Huang S; Guo M; Sha J; Yang J; Chen Y
    Phys Chem Chem Phys; 2021 Oct; 23(39):22760-22767. PubMed ID: 34608903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulated Interfacial Thermal Conductance between Cu and Diamond by a TiC Interlayer for Thermal Management Applications.
    Chang G; Sun F; Wang L; Che Z; Wang X; Wang J; Kim MJ; Zhang H
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26507-26517. PubMed ID: 31283161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites.
    Chang SW; Nair AK; Buehler MJ
    J Phys Condens Matter; 2012 Jun; 24(24):245301. PubMed ID: 22611110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Thermal Boundary Conductance of Graphite-Metal Interface by Triazine-Based Molecular Bonding.
    Ota A; Ohnishi M; Oshima H; Shiga T; Kodama T; Shiomi J
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37295-37301. PubMed ID: 31525013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking Interfacial Bonding and Thermal Conductivity in Molecularly-Confined Polymer-Glass Nanocomposites with Ultra-High Interfacial Density.
    Wang Y; Collinson DW; Kwon H; Miller RD; Lionti K; Goodson KE; Dauskardt RH
    Small; 2023 Jul; 19(28):e2301383. PubMed ID: 36971287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites.
    Wang Y; Yang C; Pei QX; Zhang Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8272-9. PubMed ID: 26959807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Remote Interfacial Phonon (RIP) Scattering in Heat Transport Across Graphene/SiO
    Koh YK; Lyons AS; Bae MH; Huang B; Dorgan VE; Cahill DG; Pop E
    Nano Lett; 2016 Oct; 16(10):6014-6020. PubMed ID: 27585088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Interface Enhancement via Inclusion of an Adhesive Layer Using Plasma-Enhanced Atomic Layer Deposition.
    Kwon H; Perez C; Kim HK; Asheghi M; Park W; Goodson KE
    ACS Appl Mater Interfaces; 2021 May; 13(18):21905-21913. PubMed ID: 33914509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Transport of AlN/Graphene/3C-SiC Typical Heterostructures with Different Crystallinities of Graphene.
    Yang B; Peng C; Song M; Tang Y; Wu Y; Wu X; Zheng H
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2384-2395. PubMed ID: 36539985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bonding-induced thermal transport enhancement across a hard/soft material interface using molecular monolayers.
    Yuan C; Huang M; Cheng Y; Luo X
    Phys Chem Chem Phys; 2017 Mar; 19(10):7352-7358. PubMed ID: 28240333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.