These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27174568)

  • 1. Elasticity of fibrous networks under uniaxial prestress.
    Vahabi M; Sharma A; Licup AJ; van Oosten AS; Galie PA; Janmey PA; MacKintosh FC
    Soft Matter; 2016 Jun; 12(22):5050-60. PubMed ID: 27174568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening.
    van Oosten AS; Vahabi M; Licup AJ; Sharma A; Galie PA; MacKintosh FC; Janmey PA
    Sci Rep; 2016 Jan; 6():19270. PubMed ID: 26758452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear Mechanical Properties of Prestressed Branched Fibrous Networks.
    Hatami-Marbini H; Rohanifar M
    Biophys J; 2021 Feb; 120(3):527-538. PubMed ID: 33412143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocolloidal hydrogel mimics the structure and nonlinear mechanical properties of biological fibrous networks.
    Prince E; Morozova S; Chen Z; Adibnia V; Yakavets I; Panyukov S; Rubinstein M; Kumacheva E
    Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2220755120. PubMed ID: 38091296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
    van Oosten ASG; Chen X; Chin L; Cruz K; Patteson AE; Pogoda K; Shenoy VB; Janmey PA
    Nature; 2019 Sep; 573(7772):96-101. PubMed ID: 31462779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperelastic continuum models for isotropic athermal fibrous networks.
    Song D; Oberai AA; Janmey PA
    Interface Focus; 2022 Dec; 12(6):20220043. PubMed ID: 36330327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poroelasticity of (bio)polymer networks during compression: theory and experiment.
    Punter MTJJM; Vos BE; Mulder BM; Koenderink GH
    Soft Matter; 2020 Feb; 16(5):1298-1305. PubMed ID: 31922166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads.
    Little JP; Pearcy MJ; Tevelen G; Evans JH; Pettet G; Adam CJ
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):146-57. PubMed ID: 20129414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress controls the mechanics of collagen networks.
    Licup AJ; Münster S; Sharma A; Sheinman M; Jawerth LM; Fabry B; Weitz DA; MacKintosh FC
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9573-8. PubMed ID: 26195769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear effective-medium theory of disordered spring networks.
    Sheinman M; Broedersz CP; MacKintosh FC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021801. PubMed ID: 22463230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic remodeling of fiber networks with stiff inclusions under compressive loading.
    Carroll B; Thanh MH; Patteson AE
    Acta Biomater; 2023 Jun; 163():106-116. PubMed ID: 36182057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-driven criticality underlies nonlinear mechanics of fibrous networks.
    Sharma A; Licup AJ; Rens R; Vahabi M; Jansen KA; Koenderink GH; MacKintosh FC
    Phys Rev E; 2016 Oct; 94(4-1):042407. PubMed ID: 27841637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.
    Perepelyuk M; Chin L; Cao X; van Oosten A; Shenoy VB; Janmey PA; Wells RG
    PLoS One; 2016; 11(1):e0146588. PubMed ID: 26735954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compression stiffening of fibrous networks with stiff inclusions.
    Shivers JL; Feng J; van Oosten ASG; Levine H; Janmey PA; MacKintosh FC
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21037-21044. PubMed ID: 32817547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive maps for stochastic nonaffine stiffening and damage in fibrous networks.
    Abhilash AS; Zhang L; Stiefel J; Purohit PK; Joshi SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022607. PubMed ID: 25353502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical response of collagen networks to nonuniform microscale loads.
    Burkel B; Notbohm J
    Soft Matter; 2017 Aug; 13(34):5749-5758. PubMed ID: 28759060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulus of Fibrous Collagen at the Length Scale of a Cell.
    Proestaki M; Ogren A; Burkel B; Notbohm J
    Exp Mech; 2019 Nov; 59(9):1323-1334. PubMed ID: 31680700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic regimes of subisostatic athermal fiber networks.
    Licup AJ; Sharma A; MacKintosh FC
    Phys Rev E; 2016 Jan; 93(1):012407. PubMed ID: 26871101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programming the mechanics of cohesive fiber networks by compression.
    Vos BE; Liebrand LC; Vahabi M; Biebricher A; Wuite GJL; Peterman EJG; Kurniawan NA; MacKintosh FC; Koenderink GH
    Soft Matter; 2017 Dec; 13(47):8886-8893. PubMed ID: 29057402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks.
    Kurniawan NA; Wong LH; Rajagopalan R
    Biomacromolecules; 2012 Mar; 13(3):691-8. PubMed ID: 22293015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.