These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Interfibrillar cardiac mitochondrial comples III defects in the aging rat heart. Hoppel CL; Moghaddas S; Lesnefsky EJ Biogerontology; 2002; 3(1-2):41-4. PubMed ID: 12014840 [TBL] [Abstract][Full Text] [Related]
8. Ischemia-reperfusion injury in the aged heart: role of mitochondria. Lesnefsky EJ; Hoppel CL Arch Biochem Biophys; 2003 Dec; 420(2):287-97. PubMed ID: 14654068 [TBL] [Abstract][Full Text] [Related]
9. Age-related alterations in oxidatively damaged proteins of mouse heart mitochondrial electron transport chain complexes. Choksi KB; Papaconstantinou J Free Radic Biol Med; 2008 May; 44(10):1795-805. PubMed ID: 18331850 [TBL] [Abstract][Full Text] [Related]
10. Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cytochrome c binding site. Lesnefsky EJ; Gudz TI; Moghaddas S; Migita CT; Ikeda-Saito M; Turkaly PJ; Hoppel CL J Mol Cell Cardiol; 2001 Jan; 33(1):37-47. PubMed ID: 11133221 [TBL] [Abstract][Full Text] [Related]
11. Posttranslational modifications and dysfunction of mitochondrial enzymes in human heart failure. Sheeran FL; Pepe S Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E449-60. PubMed ID: 27406740 [TBL] [Abstract][Full Text] [Related]
12. Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Shinmura K; Tamaki K; Sano M; Nakashima-Kamimura N; Wolf AM; Amo T; Ohta S; Katsumata Y; Fukuda K; Ishiwata K; Suematsu M; Adachi T Circ Res; 2011 Aug; 109(4):396-406. PubMed ID: 21700931 [TBL] [Abstract][Full Text] [Related]
13. Critical role of complex III in the early metabolic changes following myocardial infarction. Heather LC; Carr CA; Stuckey DJ; Pope S; Morten KJ; Carter EE; Edwards LM; Clarke K Cardiovasc Res; 2010 Jan; 85(1):127-36. PubMed ID: 19666902 [TBL] [Abstract][Full Text] [Related]
14. Cardiac mitochondrial energy metabolism in heart failure: Role of cardiolipin and sirtuins. Dolinsky VW; Cole LK; Sparagna GC; Hatch GM Biochim Biophys Acta; 2016 Oct; 1861(10):1544-54. PubMed ID: 26972373 [TBL] [Abstract][Full Text] [Related]
15. Cardiolipin as an oxidative target in cardiac mitochondria in the aged rat. Lesnefsky EJ; Hoppel CL Biochim Biophys Acta; 2008; 1777(7-8):1020-7. PubMed ID: 18515061 [TBL] [Abstract][Full Text] [Related]
16. Enhanced modification of cardiolipin during ischemia in the aged heart. Lesnefsky EJ; Minkler P; Hoppel CL J Mol Cell Cardiol; 2009 Jun; 46(6):1008-15. PubMed ID: 19303420 [TBL] [Abstract][Full Text] [Related]
17. Effects of aging on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart. Tatarková Z; Kuka S; Račay P; Lehotský J; Dobrota D; Mištuna D; Kaplán P Physiol Res; 2011; 60(2):281-9. PubMed ID: 21114360 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial Bioenergetics and Dysfunction in Failing Heart. Sheeran FL; Pepe S Adv Exp Med Biol; 2017; 982():65-80. PubMed ID: 28551782 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart. Vazquez EJ; Berthiaume JM; Kamath V; Achike O; Buchanan E; Montano MM; Chandler MP; Miyagi M; Rosca MG Cardiovasc Res; 2015 Sep; 107(4):453-65. PubMed ID: 26101264 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species. Schönfeld P; Wieckowski MR; Lebiedzińska M; Wojtczak L Biochim Biophys Acta; 2010; 1797(6-7):929-38. PubMed ID: 20085746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]