These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 27175601)

  • 21. Concomitant application of sprint and high-intensity interval training on maximal oxygen uptake and work output in well-trained cyclists.
    Hebisz P; Hebisz R; Zatoń M; Ochmann B; Mielnik N
    Eur J Appl Physiol; 2016 Aug; 116(8):1495-502. PubMed ID: 27262887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of cycling position on oxygen uptake and preferred cadence in trained cyclists during hill climbing at various power outputs.
    Harnish C; King D; Swensen T
    Eur J Appl Physiol; 2007 Mar; 99(4):387-91. PubMed ID: 17165053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling.
    Marsh AP; Martin PE; Foley KO
    Med Sci Sports Exerc; 2000 Sep; 32(9):1630-4. PubMed ID: 10994916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Cycling Training at Imposed Low Cadences: A Systematic Review.
    Hansen EA; Rønnestad BR
    Int J Sports Physiol Perform; 2017 Oct; 12(9):1127-1136. PubMed ID: 28095074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of cadence on cycling efficiency and local tissue oxygenation.
    D Jacobs R; E Berg K; Slivka DR; Noble JM
    J Strength Cond Res; 2013 Mar; 27(3):637-42. PubMed ID: 22648142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of gradient and speed on freely chosen cadence: the key role of crank inertial load.
    Sassi A; Rampinini E; Martin DT; Morelli A
    J Biomech; 2009 Jan; 42(2):171-7. PubMed ID: 19041974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Eccentric cycling does not improve cycling performance in amateur cyclists.
    Paulsen G; Eidsheim HØ; Helland C; Seynnes O; Solberg PA; Rønnestad BR
    PLoS One; 2019; 14(1):e0208452. PubMed ID: 30601819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endurance and strength training effects on physiological and muscular parameters during prolonged cycling.
    Hausswirth C; Argentin S; Bieuzen F; Le Meur Y; Couturier A; Brisswalter J
    J Electromyogr Kinesiol; 2010 Apr; 20(2):330-9. PubMed ID: 19473854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effect of Different High-Intensity Periodization Models on Endurance Adaptations.
    Sylta Ø; Tønnessen E; Hammarström D; Danielsen J; Skovereng K; Ravn T; Rønnestad BR; Sandbakk Ø; Seiler S
    Med Sci Sports Exerc; 2016 Nov; 48(11):2165-2174. PubMed ID: 27300278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of training status, age, and muscle fiber type on cycling efficiency and endurance performance.
    Hopker JG; Coleman DA; Gregson HC; Jobson SA; Von der Haar T; Wiles J; Passfield L
    J Appl Physiol (1985); 2013 Sep; 115(5):723-9. PubMed ID: 23813527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cadence selection affects metabolic responses during cycling and subsequent running time to fatigue.
    Vercruyssen F; Suriano R; Bishop D; Hausswirth C; Brisswalter J
    Br J Sports Med; 2005 May; 39(5):267-72. PubMed ID: 15849289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetically optimal cadence vs. freely-chosen cadence during cycling: effect of exercise duration.
    Brisswalter J; Hausswirth C; Smith D; Vercruyssen F; Vallier JM
    Int J Sports Med; 2000 Jan; 21(1):60-4. PubMed ID: 10683101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The relationship between freely chosen cadence and optimal cadence in cycling.
    Emanuele U; Horn T; Denoth J
    Int J Sports Physiol Perform; 2012 Dec; 7(4):375-81. PubMed ID: 22868209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The choice of freely preferred cadence by trained nonprofessional cyclists may not be characterized by mechanical efficiency.
    Weinstein Y; Mor-Unikowski R; Nice S; Hocherman S; Inbar O
    J Basic Clin Physiol Pharmacol; 2017 Jul; 28(4):363-370. PubMed ID: 28493819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maximal strength training improves cycling economy in competitive cyclists.
    Sunde A; Støren O; Bjerkaas M; Larsen MH; Hoff J; Helgerud J
    J Strength Cond Res; 2010 Aug; 24(8):2157-65. PubMed ID: 19855311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fitness, body composition and blood lipids following 3 concurrent strength and endurance training modes.
    Eklund D; Häkkinen A; Laukkanen JA; Balandzic M; Nyman K; Häkkinen K
    Appl Physiol Nutr Metab; 2016 Jul; 41(7):767-74. PubMed ID: 27351384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists.
    Takaishi T; Yamamoto T; Ono T; Ito T; Moritani T
    Med Sci Sports Exerc; 1998 Mar; 30(3):442-9. PubMed ID: 9526892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combining explosive and high-resistance training improves performance in competitive cyclists.
    Paton CD; Hopkins WG
    J Strength Cond Res; 2005 Nov; 19(4):826-30. PubMed ID: 16287351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strength training improves performance and pedaling characteristics in elite cyclists.
    Rønnestad BR; Hansen J; Hollan I; Ellefsen S
    Scand J Med Sci Sports; 2015 Feb; 25(1):e89-98. PubMed ID: 24862305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stability of pedalling mechanics during a prolonged cycling exercise performed at different cadences.
    Sarre G; Lepers R; van Hoecke J
    J Sports Sci; 2005 Jul; 23(7):693-701. PubMed ID: 16195019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.