These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27175813)

  • 1. Extracellular Matrices (ECM) for Tissue Repair.
    Polanco TO; Xylas J; Lantis JC
    Surg Technol Int; 2016 Apr; 28():43-57. PubMed ID: 27175813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue engineering for cutaneous wounds.
    Clark RA; Ghosh K; Tonnesen MG
    J Invest Dermatol; 2007 May; 127(5):1018-29. PubMed ID: 17435787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of skin repair is dependent on fibroblast source and presence of extracellular matrix.
    Wang HJ; Pieper J; Schotel R; van Blitterswijk CA; Lamme EN
    Tissue Eng; 2004; 10(7-8):1054-64. PubMed ID: 15363163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanoregulation of Wound Healing and Skin Homeostasis.
    Rosińczuk J; Taradaj J; Dymarek R; Sopel M
    Biomed Res Int; 2016; 2016():3943481. PubMed ID: 27413744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue scaffolds for skin wound healing and dermal reconstruction.
    Zhong SP; Zhang YZ; Lim CT
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(5):510-25. PubMed ID: 20607703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A porcine-cholecyst-derived scaffold for treating full thickness lacerated skin wounds in dogs.
    Karthika S; Anoop S; Devanand CB; Narayanan MK; Unni M; Eassow S; Anilkumar T
    Vet Res Commun; 2018 Sep; 42(3):233-242. PubMed ID: 30069619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing.
    Wang Z; Qian Y; Li L; Pan L; Njunge LW; Dong L; Yang L
    J Biomater Appl; 2016 Jan; 30(6):686-98. PubMed ID: 26012354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional Matrix Nanotopography with Varied Sizes for Engineering Wound Healing.
    Kim J; Bae WG; Kim YJ; Seonwoo H; Choung HW; Jang KJ; Park S; Kim BH; Kim HN; Choi KS; Kim MS; Choung PH; Choung YH; Chung JH
    Adv Healthc Mater; 2017 Oct; 6(19):. PubMed ID: 28636203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Use of Biologic Scaffolds in the Treatment of Chronic Nonhealing Wounds.
    Turner NJ; Badylak SF
    Adv Wound Care (New Rochelle); 2015 Aug; 4(8):490-500. PubMed ID: 26244105
    [No Abstract]   [Full Text] [Related]  

  • 10. Nanofibrous structured biomimetic strategies for skin tissue regeneration.
    Jayarama Reddy V; Radhakrishnan S; Ravichandran R; Mukherjee S; Balamurugan R; Sundarrajan S; Ramakrishna S
    Wound Repair Regen; 2013; 21(1):1-16. PubMed ID: 23126632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioengineered matrices--part 1: attaining structural success in biologic skin substitutes.
    Widgerow AD
    Ann Plast Surg; 2012 Jun; 68(6):568-73. PubMed ID: 22643101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-thickness skin wound healing using human placenta-derived extracellular matrix containing bioactive molecules.
    Choi JS; Kim JD; Yoon HS; Cho YW
    Tissue Eng Part A; 2013 Feb; 19(3-4):329-39. PubMed ID: 22891853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wound healing potential of scaffolds prepared from porcine jejunum and urinary bladder by a non-detergent/enzymatic method.
    Revi D; Vineetha VP; Muhamed J; Surendran GC; Rajan A; Kumary TV; Anilkumar TV
    J Biomater Appl; 2015 Apr; 29(9):1218-29. PubMed ID: 25425562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An update on clinical applications of electrospun nanofibers for skin bioengineering.
    Pilehvar-Soltanahmadi Y; Akbarzadeh A; Moazzez-Lalaklo N; Zarghami N
    Artif Cells Nanomed Biotechnol; 2016 Sep; 44(6):1350-64. PubMed ID: 25939744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction.
    Badylak SF
    Transpl Immunol; 2004 Apr; 12(3-4):367-77. PubMed ID: 15157928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in skin regeneration: application of electrospun scaffolds.
    Norouzi M; Boroujeni SM; Omidvarkordshouli N; Soleimani M
    Adv Healthc Mater; 2015 Jun; 4(8):1114-33. PubMed ID: 25721694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue engineering for the management of chronic wounds: current concepts and future perspectives.
    Wong VW; Gurtner GC
    Exp Dermatol; 2012 Oct; 21(10):729-34. PubMed ID: 22742728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active wound coverings: bioengineered skin and dermal substitutes.
    Límová M
    Surg Clin North Am; 2010 Dec; 90(6):1237-55. PubMed ID: 21074039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MSCs seeded on bioengineered scaffolds improve skin wound healing in rats.
    Formigli L; Paternostro F; Tani A; Mirabella C; Quattrini Li A; Nosi D; D'Asta F; Saccardi R; Mazzanti B; Lo Russo G; Zecchi-Orlandini S
    Wound Repair Regen; 2015; 23(1):115-23. PubMed ID: 25571903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Wound healing in the elderly].
    Eming SA; Wlaschek M; Scharffetter-Kochanek K
    Hautarzt; 2016 Feb; 67(2):112-6. PubMed ID: 26728073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.