These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27176286)

  • 1. Large-displacement statistics of the rightmost particle of the one-dimensional branching Brownian motion.
    Derrida B; Meerson B; Sasorov PV
    Phys Rev E; 2016 Apr; 93():042139. PubMed ID: 27176286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle-number distribution in large fluctuations at the tip of branching random walks.
    Mueller AH; Munier S
    Phys Rev E; 2020 Aug; 102(2-1):022104. PubMed ID: 32942493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial extent of branching Brownian motion.
    Ramola K; Majumdar SN; Schehr G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042131. PubMed ID: 25974462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival of interacting Brownian particles in crowded one-dimensional environment.
    Ryabov A; Chvosta P
    J Chem Phys; 2012 Feb; 136(6):064114. PubMed ID: 22360176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenomenological picture of fluctuations in branching random walks.
    Mueller AH; Munier S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042143. PubMed ID: 25375474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion.
    Jeon JH; Chechkin AV; Metzler R
    Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts.
    Brunet E; Derrida B; Mueller AH; Munier S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056126. PubMed ID: 16803017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase transition, scaling of moments, and order-parameter distributions in Brownian particles and branching processes with finite-size effects.
    Corral Á; Garcia-Millan R; Moloney NR; Font-Clos F
    Phys Rev E; 2018 Jun; 97(6-1):062156. PubMed ID: 30011443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach.
    Yariv E; Schnitzer O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion of tagged particle in an exclusion process.
    Barkai E; Silbey R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041129. PubMed ID: 20481699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuations of a swarm of Brownian bees.
    Siboni M; Sasorov P; Meerson B
    Phys Rev E; 2021 Nov; 104(5-1):054131. PubMed ID: 34942750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric scaling as traveling waves.
    Munier S; Peschanski R
    Phys Rev Lett; 2003 Dec; 91(23):232001. PubMed ID: 14683173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superdiffusive trajectories in Brownian motion.
    Duplat J; Kheifets S; Li T; Raizen MG; Villermaux E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):020105. PubMed ID: 23496441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling limit of vicious walks and two-matrix model.
    Katori M; Tanemura H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011105. PubMed ID: 12241339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized persistence dynamics for active motion.
    Sevilla FJ; Castro-Villarreal P
    Phys Rev E; 2021 Dec; 104(6-1):064601. PubMed ID: 35030873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetry broken motion of a periodically driven Brownian particle: nonadiabatic regime.
    Fistul MV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046621. PubMed ID: 12006061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Communication: translational Brownian motion for particles of arbitrary shape.
    Cichocki B; Ekiel-Jeżewska ML; Wajnryb E
    J Chem Phys; 2012 Feb; 136(7):071102. PubMed ID: 22360229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion of active chiral particles.
    Sevilla FJ
    Phys Rev E; 2016 Dec; 94(6-1):062120. PubMed ID: 28085387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brownian motion of finite-inertia particles in a simple shear flow.
    Drossinos Y; Reeks MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031113. PubMed ID: 15903412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.