These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27176382)

  • 1. Formation of rarefaction waves in origami-based metamaterials.
    Yasuda H; Chong C; Charalampidis EG; Kevrekidis PG; Yang J
    Phys Rev E; 2016 Apr; 93():043004. PubMed ID: 27176382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reentrant Origami-Based Metamaterials with Negative Poisson's Ratio and Bistability.
    Yasuda H; Yang J
    Phys Rev Lett; 2015 May; 114(18):185502. PubMed ID: 26001009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origami-based impact mitigation via rarefaction solitary wave creation.
    Yasuda H; Miyazawa Y; Charalampidis EG; Chong C; Kevrekidis PG; Yang J
    Sci Adv; 2019 May; 5(5):eaau2835. PubMed ID: 31139744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of rarefaction pulses in discrete materials with strain-softening behavior.
    Herbold EB; Nesterenko VF
    Phys Rev Lett; 2013 Apr; 110(14):144101. PubMed ID: 25166992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding behaviour of Tachi-Miura polyhedron bellows.
    Yasuda H; Yein T; Tachi T; Miura K; Taya M
    Proc Math Phys Eng Sci; 2013 Nov; 469(2159):20130351. PubMed ID: 24204186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable wave coupling in periodically rotated Miura-ori tubes.
    Tomita S; Tachi T
    Philos Trans A Math Phys Eng Sci; 2024 Oct; 382(2283):20240006. PubMed ID: 39370787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable stopbands and supratransmission effects in a stacked Miura-origami metastructure.
    Zhang Q; Fang H; Xu J
    Phys Rev E; 2020 Apr; 101(4-1):042206. PubMed ID: 32422700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origami Metamaterials for Tunable Thermal Expansion.
    Boatti E; Vasios N; Bertoldi K
    Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28466566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding at the Microscale: Enabling Multifunctional 3D Origami-Architected Metamaterials.
    Lin Z; Novelino LS; Wei H; Alderete NA; Paulino GH; Espinosa HD; Krishnaswamy S
    Small; 2020 Sep; 16(35):e2002229. PubMed ID: 32715617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation Dynamics in Origami.
    Liu C; Felton SM
    Phys Rev Lett; 2018 Dec; 121(25):254101. PubMed ID: 30608815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Twist of Tubular Mechanical Metamaterials Based on Waterbomb Origami.
    Feng H; Ma J; Chen Y; You Z
    Sci Rep; 2018 Jun; 8(1):9522. PubMed ID: 29934606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling metamaterial properties in zigzag-base folded sheets.
    Eidini M; Paulino GH
    Sci Adv; 2015 Sep; 1(8):e1500224. PubMed ID: 26601253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering the deformation mechanisms of origami metamaterials by introducing generic degree-four vertices.
    Fang H; Li S; Ji H; Wang KW
    Phys Rev E; 2016 Oct; 94(4-1):043002. PubMed ID: 27841481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helical Miura origami.
    Feng F; Plucinsky P; James RD
    Phys Rev E; 2020 Mar; 101(3-1):033002. PubMed ID: 32290005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic theory of origami-based metamaterials.
    Brunck V; Lechenault F; Reid A; Adda-Bedia M
    Phys Rev E; 2016 Mar; 93(3):033005. PubMed ID: 27078439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origami spring-inspired metamaterials and robots: An attempt at fully programmable robotics.
    Hu F; Wang W; Cheng J; Bao Y
    Sci Prog; 2020; 103(3):36850420946162. PubMed ID: 32840456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures.
    Wang F; Gong H; Chen X; Chen CQ
    Sci Rep; 2016 Sep; 6():33312. PubMed ID: 27624892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable Self-Locking Origami Mechanical Metamaterials.
    Fang H; Chu SA; Xia Y; Wang KW
    Adv Mater; 2018 Apr; 30(15):e1706311. PubMed ID: 29513374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties.
    Kamrava S; Mousanezhad D; Ebrahimi H; Ghosh R; Vaziri A
    Sci Rep; 2017 Apr; 7():46046. PubMed ID: 28387345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triclinic Metamaterials by Tristable Origami with Reprogrammable Frustration.
    Liu K; Pratapa PP; Misseroni D; Tachi T; Paulino GH
    Adv Mater; 2022 Oct; 34(43):e2107998. PubMed ID: 35790039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.