These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27176403)

  • 21. Compressible turbulent mixing: Effects of Schmidt number.
    Ni Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053020. PubMed ID: 26066261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary clustering of Lagrangian trajectories in turbulent Rayleigh-Bénard convection flows.
    Schneide C; Vieweg PP; Schumacher J; Padberg-Gehle K
    Chaos; 2022 Jan; 32(1):013123. PubMed ID: 35105126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed.
    Reynolds AM
    Phytopathology; 2012 Nov; 102(11):1026-33. PubMed ID: 23046208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulating Lagrangian Subgrid-Scale Dispersion on Neutral Surfaces in the Ocean.
    Reijnders D; Deleersnijder E; van Sebille E
    J Adv Model Earth Syst; 2022 Feb; 14(2):e2021MS002850. PubMed ID: 35860619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Turbulent transport of material particles: an experimental study of finite size effects.
    Qureshi NM; Bourgoin M; Baudet C; Cartellier A; Gagne Y
    Phys Rev Lett; 2007 Nov; 99(18):184502. PubMed ID: 17995412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intermittency of velocity time increments in turbulence.
    Chevillard L; Roux SG; Lévêque E; Mordant N; Pinton JF; Arnéodo A
    Phys Rev Lett; 2005 Aug; 95(6):064501. PubMed ID: 16090958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of particle dispersion by sweeping effects in synthetic turbulence.
    Eyink GL; Benveniste D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023011. PubMed ID: 23496614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drift and pseudomomentum in bounded turbulent shear flows.
    Phillips WR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043003. PubMed ID: 26565328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the Formulation of Lagrangian Stochastic Models for Heavy-Particle Trajectories.
    Reynolds AM
    J Colloid Interface Sci; 2000 Dec; 232(2):260-268. PubMed ID: 11097759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lagrangian statistics and flow topology in forced two-dimensional turbulence.
    Kadoch B; Del-Castillo-Negrete D; Bos WJ; Schneider K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036314. PubMed ID: 21517594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anomalous scaling and intermittency in three-dimensional synthetic turbulence.
    Rosales C; Meneveau C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016313. PubMed ID: 18764056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lagrangian refined Kolmogorov similarity hypothesis for gradient time evolution and correlation in turbulent flows.
    Yu H; Meneveau C
    Phys Rev Lett; 2010 Feb; 104(8):084502. PubMed ID: 20366935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Eulerian and Lagrangian scales on the relative dispersion properties in Lagrangian stochastic models of turbulence.
    Maurizi A; Pagnini G; Tampieri F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):037301. PubMed ID: 15089447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors.
    Olcay AB; Pottebaum TS; Krueger PS
    Chaos; 2010 Mar; 20(1):017506. PubMed ID: 20370296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long time correlations in lagrangian dynamics: a key to intermittency in turbulence.
    Mordant N; Delour J; Léveque E; Arnéodo A; Pinton JF
    Phys Rev Lett; 2002 Dec; 89(25):254502. PubMed ID: 12484891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bursting and large-scale intermittency in turbulent convection with differential rotation.
    Garcia OE; Bian NH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):047301. PubMed ID: 14683087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars.
    Sabel'nikov V; Soulard O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016301. PubMed ID: 16090080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Instantaneous transport of a passive scalar in a turbulent separated flow.
    Ouro P; Fraga B; Viti N; Angeloudis A; Stoesser T; Gualtieri C
    Environ Fluid Mech (Dordr); 2018; 18(2):487-513. PubMed ID: 31258455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental investigation of Lagrangian structure functions in turbulence.
    Berg J; Ott S; Mann J; Lüthi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026316. PubMed ID: 19792258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lagrangian coherent structures separate dynamically distinct regions in fluid flows.
    Kelley DH; Allshouse MR; Ouellette NT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013017. PubMed ID: 23944559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.