These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 27176424)
1. Lattice Boltzmann method for binary fluids based on mass-conserving quasi-incompressible phase-field theory. Yang K; Guo Z Phys Rev E; 2016 Apr; 93():043303. PubMed ID: 27176424 [TBL] [Abstract][Full Text] [Related]
2. Phase-field-theory-based lattice Boltzmann equation method for N immiscible incompressible fluids. Zheng L; Zheng S Phys Rev E; 2019 Jun; 99(6-1):063310. PubMed ID: 31330677 [TBL] [Abstract][Full Text] [Related]
3. Phase-field lattice Boltzmann model with singular mobility for quasi-incompressible two-phase flows. Bao J; Guo Z Phys Rev E; 2024 Feb; 109(2-2):025302. PubMed ID: 38491598 [TBL] [Abstract][Full Text] [Related]
4. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts. Zu YQ; He S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043301. PubMed ID: 23679542 [TBL] [Abstract][Full Text] [Related]
5. Study of phase-field lattice Boltzmann models based on the conservative Allen-Cahn equation. Begmohammadi A; Haghani-Hassan-Abadi R; Fakhari A; Bolster D Phys Rev E; 2020 Aug; 102(2-1):023305. PubMed ID: 32942360 [TBL] [Abstract][Full Text] [Related]
7. Theoretical and numerical study on the well-balanced regularized lattice Boltzmann model for two-phase flow. Zhang Q; Jiang M; Zhuo C; Zhong C; Liu S Phys Rev E; 2023 Nov; 108(5-2):055309. PubMed ID: 38115487 [TBL] [Abstract][Full Text] [Related]
9. Lattice Boltzmann equation method for the Cahn-Hilliard equation. Zheng L; Zheng S; Zhai Q Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013309. PubMed ID: 25679741 [TBL] [Abstract][Full Text] [Related]
10. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation. Ren F; Song B; Sukop MC; Hu H Phys Rev E; 2016 Aug; 94(2-1):023311. PubMed ID: 27627416 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations. Wang HL; Chai ZH; Shi BC; Liang H Phys Rev E; 2016 Sep; 94(3-1):033304. PubMed ID: 27739765 [TBL] [Abstract][Full Text] [Related]
13. Modified phase-field-based lattice Boltzmann model for incompressible multiphase flows. Xu X; Hu Y; Dai B; Yang L; Han J; He Y; Zhu J Phys Rev E; 2021 Sep; 104(3-2):035305. PubMed ID: 34654078 [TBL] [Abstract][Full Text] [Related]
14. Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios. Fakhari A; Mitchell T; Leonardi C; Bolster D Phys Rev E; 2017 Nov; 96(5-1):053301. PubMed ID: 29347689 [TBL] [Abstract][Full Text] [Related]
15. Kinematics of chromodynamic multicomponent lattice Boltzmann simulation with a large density contrast. Burgin K; Spendlove J; Xu X; Halliday I Phys Rev E; 2019 Oct; 100(4-1):043310. PubMed ID: 31770993 [TBL] [Abstract][Full Text] [Related]
16. Conservative phase-field lattice Boltzmann model for interface tracking equation. Geier M; Fakhari A; Lee T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063309. PubMed ID: 26172824 [TBL] [Abstract][Full Text] [Related]
17. Hybrid Allen-Cahn-based lattice Boltzmann model for incompressible two-phase flows: The reduction of numerical dispersion. Hu Y; Li D; Jin L; Niu X; Shu S Phys Rev E; 2019 Feb; 99(2-1):023302. PubMed ID: 30934363 [TBL] [Abstract][Full Text] [Related]
18. Phase-field method based on discrete unified gas-kinetic scheme for large-density-ratio two-phase flows. Yang Z; Zhong C; Zhuo C Phys Rev E; 2019 Apr; 99(4-1):043302. PubMed ID: 31108650 [TBL] [Abstract][Full Text] [Related]
19. Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver. Mohammadi-Shad M; Lee T Phys Rev E; 2017 Jul; 96(1-1):013306. PubMed ID: 29347090 [TBL] [Abstract][Full Text] [Related]
20. Lattice Boltzmann equation for microscale gas flows of binary mixtures. Guo Z; Asinari P; Zheng C Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026702. PubMed ID: 19391869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]