These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 27176424)

  • 21. Bulk and shear viscosities in lattice Boltzmann equations.
    Dellar PJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031203. PubMed ID: 11580323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromodynamic multirelaxation-time lattice Boltzmann scheme for fluids with density difference.
    Spendlove J; Xu X; Halliday OJ; Schenkel T; Halliday I
    Phys Rev E; 2020 Jul; 102(1-1):013309. PubMed ID: 32794994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entropic lattice Boltzmann model for gas dynamics: Theory, boundary conditions, and implementation.
    Frapolli N; Chikatamarla SS; Karlin IV
    Phys Rev E; 2016 Jun; 93(6):063302. PubMed ID: 27415382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase-field-based lattice Boltzmann model for immiscible incompressible N-phase flows.
    Yuan X; Liang H; Chai Z; Shi B
    Phys Rev E; 2020 Jun; 101(6-1):063310. PubMed ID: 32688516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shrinkage of bubbles and drops in the lattice Boltzmann equation method for nonideal gases.
    Zheng L; Lee T; Guo Z; Rumschitzki D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033302. PubMed ID: 24730962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast.
    Shao JY; Shu C; Huang HB; Chew YT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033309. PubMed ID: 24730969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lattice Boltzmann modeling of three-phase incompressible flows.
    Liang H; Shi BC; Chai ZH
    Phys Rev E; 2016 Jan; 93(1):013308. PubMed ID: 26871191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial entropic stabilization of lattice Boltzmann magnetohydrodynamics.
    Flint C; Vahala G
    Phys Rev E; 2018 Jan; 97(1-1):013302. PubMed ID: 29448429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase-field modeling by the method of lattice Boltzmann equations.
    Fakhari A; Rahimian MH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036707. PubMed ID: 20365904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical and numerical study of axisymmetric lattice Boltzmann models.
    Huang H; Lu XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016701. PubMed ID: 19658832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase-field lattice Boltzmann model for interface tracking of a binary fluid system based on the Allen-Cahn equation.
    Zu YQ; Li AD; Wei H
    Phys Rev E; 2020 Nov; 102(5-1):053307. PubMed ID: 33327126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows.
    Li Q; Luo KH; Gao YJ; He YL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026704. PubMed ID: 22463354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simplified method for simulation of incompressible viscous flows inspired by the lattice Boltzmann method.
    Huang JJ
    Phys Rev E; 2021 May; 103(5-1):053311. PubMed ID: 34134207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows.
    Liang H; Shi BC; Guo ZL; Chai ZH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053320. PubMed ID: 25353927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interface-capturing lattice Boltzmann equation model for two-phase flows.
    Lou Q; Guo Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013302. PubMed ID: 25679734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lattice Boltzmann simulations of binary fluid flow through porous media.
    Tölke J; Krafczyk M; Schulz M; Rank E
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):535-45. PubMed ID: 16214693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theory of the lattice Boltzmann equation: Lattice Boltzmann model for axisymmetric flows.
    Guo Z; Han H; Shi B; Zheng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046708. PubMed ID: 19518381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multicomponent lattice Boltzmann method for fluids with a density contrast.
    Lishchuk SV; Halliday I; Care CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036702. PubMed ID: 18517552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lattice Boltzmann equation method for multiple immiscible continuum fluids.
    Spencer TJ; Halliday I; Care CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066701. PubMed ID: 21230748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.