These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 27176439)

  • 1. Eigenvalue analysis of an irreversible random walk with skew detailed balance conditions.
    Sakai Y; Hukushima K
    Phys Rev E; 2016 Apr; 93():043318. PubMed ID: 27176439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Irreversible Monte Carlo Samplers.
    Faizi F; Deligiannidis G; Rosta E
    J Chem Theory Comput; 2020 Apr; 16(4):2124-2138. PubMed ID: 32097548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational method for estimating the rate of convergence of Markov-chain Monte Carlo algorithms.
    Casey FP; Waterfall JJ; Gutenkunst RN; Myers CR; Sethna JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046704. PubMed ID: 18999558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm.
    Pereyra M; Dobigeon N; Batatia H; Tourneret JY
    IEEE Trans Image Process; 2013 Jun; 22(6):2385-97. PubMed ID: 23475357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general construction for parallelizing Metropolis-Hastings algorithms.
    Calderhead B
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17408-13. PubMed ID: 25422442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of Markov chain Monte Carlo simulations through sequential updating.
    Ren R; Orkoulas G
    J Chem Phys; 2006 Feb; 124(6):64109. PubMed ID: 16483198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying diffusion-based Markov chain Monte Carlo.
    Herbei R; Paul R; Berliner LM
    PLoS One; 2017; 12(3):e0173453. PubMed ID: 28301529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants.
    Liang F; Jin IH
    Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data.
    Liang F; Kim J; Song Q
    Technometrics; 2016; 58(3):604-318. PubMed ID: 29033469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Barker proposal: Combining robustness and efficiency in gradient-based MCMC.
    Livingstone S; Zanella G
    J R Stat Soc Series B Stat Methodol; 2022 Apr; 84(2):496-523. PubMed ID: 35910401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Monte Carlo efficiency by Monte Carlo analysis.
    Rubenstein BM; Gubernatis JE; Doll JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036701. PubMed ID: 21230207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombination operators and selection strategies for evolutionary Markov Chain Monte Carlo algorithms.
    Drugan MM; Thierens D
    Evol Intell; 2010 Aug; 3(2):79-101. PubMed ID: 21151488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated tempering based on global balance or detailed balance conditions: Suwa-Todo, heat bath, and Metropolis algorithms.
    Mori Y; Okumura H
    J Comput Chem; 2015 Dec; 36(31):2344-9. PubMed ID: 26466561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of alternative MCMC strategies illustrated using the reaction norm model.
    Shariati M; Sorensen D
    J Anim Breed Genet; 2008 Jun; 125(3):176-86. PubMed ID: 18479268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Markov chain Monte Carlo method without detailed balance.
    Suwa H; Todo S
    Phys Rev Lett; 2010 Sep; 105(12):120603. PubMed ID: 20867621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zoeppritz-based AVO inversion using an improved Markov chain Monte Carlo method.
    Pan XP; Zhang GZ; Zhang JJ; Yin XY
    Pet Sci; 2017; 14(1):75-83. PubMed ID: 28239392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions.
    Frühwirth-Schnatter S; Pyne S
    Biostatistics; 2010 Apr; 11(2):317-36. PubMed ID: 20110247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Event-chain Monte Carlo algorithms for hard-sphere systems.
    Bernard EP; Krauth W; Wilson DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056704. PubMed ID: 20365093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of conformational biases in Monte Carlo simulations of protein folding: lessons from Metropolis-Hastings approach.
    Przytycka T
    Proteins; 2004 Nov; 57(2):338-44. PubMed ID: 15340921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized event-chain Monte Carlo: constructing rejection-free global-balance algorithms from infinitesimal steps.
    Michel M; Kapfer SC; Krauth W
    J Chem Phys; 2014 Feb; 140(5):054116. PubMed ID: 24511931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.