These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27176486)

  • 1. I Hear You Eat and Speak: Automatic Recognition of Eating Condition and Food Type, Use-Cases, and Impact on ASR Performance.
    Hantke S; Weninger F; Kurle R; Ringeval F; Batliner A; Mousa Ael-D; Schuller B
    PLoS One; 2016; 11(5):e0154486. PubMed ID: 27176486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix sentence intelligibility prediction using an automatic speech recognition system.
    Schädler MR; Warzybok A; Hochmuth S; Kollmeier B
    Int J Audiol; 2015; 54 Suppl 2():100-7. PubMed ID: 26383042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of age, hearing, and working memory on the speech comprehension benefit derived from an automatic speech recognition system.
    Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T
    Ear Hear; 2009 Apr; 30(2):262-72. PubMed ID: 19194286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Language-independent automatic evaluation of intelligibility of chronically hoarse persons.
    Haderlein T; Middag C; Martens JP; Döllinger M; Nöth E
    Folia Phoniatr Logop; 2014; 66(6):219-26. PubMed ID: 25659422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic prediction of intelligible speaking rate for individuals with ALS from speech acoustic and articulatory samples.
    Wang J; Kothalkar PV; Kim M; Bandini A; Cao B; Yunusova Y; Campbell TF; Heitzman D; Green JR
    Int J Speech Lang Pathol; 2018 Nov; 20(6):669-679. PubMed ID: 30409057
    [No Abstract]   [Full Text] [Related]  

  • 7. Multiexpert automatic speech recognition using acoustic and myoelectric signals.
    Chan AD; Englehart KB; Hudgins B; Lovely DF
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):676-85. PubMed ID: 16602574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimising Speaker-Dependent Feature Extraction Parameters to Improve Automatic Speech Recognition Performance for People with Dysarthria.
    Marini M; Vanello N; Fanucci L
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The benefit obtained from visually displayed text from an automatic speech recognizer during listening to speech presented in noise.
    Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T
    Ear Hear; 2008 Dec; 29(6):838-52. PubMed ID: 18633325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between perceptual disturbances in dysarthric speech and automatic speech recognition performance.
    Tu M; Wisler A; Berisha V; Liss JM
    J Acoust Soc Am; 2016 Nov; 140(5):EL416. PubMed ID: 27908075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
    Meyer BT; Brand T; Kollmeier B
    J Acoust Soc Am; 2011 Jan; 129(1):388-403. PubMed ID: 21303019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vocal tract representation in the recognition of cerebral palsied speech.
    Rudzicz F; Hirst G; van Lieshout P
    J Speech Lang Hear Res; 2012 Aug; 55(4):1190-207. PubMed ID: 22271873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intelligibility of laryngectomees' substitute speech: automatic speech recognition and subjective rating.
    Schuster M; Haderlein T; Nöth E; Lohscheller J; Eysholdt U; Rosanowski F
    Eur Arch Otorhinolaryngol; 2006 Feb; 263(2):188-93. PubMed ID: 16001246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid machine learning classification scheme for speaker identification.
    V K; S SP
    J Forensic Sci; 2022 May; 67(3):1033-1048. PubMed ID: 35141903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Wearable Device for Food Intake and Physical Activity Recognition.
    Farooq M; Sazonov E
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27409622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic intelligibility classification of sentence-level pathological speech.
    Kim J; Kumar N; Tsiartas A; Li M; Narayanan SS
    Comput Speech Lang; 2015 Jan; 29(1):132-144. PubMed ID: 25414544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors that influence the performance of experienced speech recognition users.
    Koester HH
    Assist Technol; 2006; 18(1):56-76. PubMed ID: 16796242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic intelligibility assessment of speakers after laryngeal cancer by means of acoustic modeling.
    Bocklet T; Riedhammer K; Nöth E; Eysholdt U; Haderlein T
    J Voice; 2012 May; 26(3):390-7. PubMed ID: 21820272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT.
    Toledano DT; Fernández-Gallego MP; Lozano-Diez A
    PLoS One; 2018; 13(10):e0205355. PubMed ID: 30304055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic intelligibility assessment of pathologic speech over the telephone.
    Haderlein T; Nöth E; Batliner A; Eysholdt U; Rosanowski F
    Logoped Phoniatr Vocol; 2011 Dec; 36(4):175-81. PubMed ID: 21875389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.