These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27176486)

  • 21. The effect of automatic speech recognition systems on speaking workload and task efficiency.
    Rieger JM
    Disabil Rehabil; 2003 Feb 18-Mar 4; 25(4-5):224-35. PubMed ID: 12623631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Speech intelligibility enhancement after maxillary denture treatment and its impact on quality of life.
    Knipfer C; Riemann M; Bocklet T; Noeth E; Schuster M; Sokol B; Eitner S; Nkenke E; Stelzle F
    Int J Prosthodont; 2014; 27(1):61-9. PubMed ID: 24392479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of automatic speech recognition showing the influence of nasality on speech intelligibility.
    Mayr S; Burkhardt K; Schuster M; Rogler K; Maier A; Iro H
    Eur Arch Otorhinolaryngol; 2010 Nov; 267(11):1719-25. PubMed ID: 20422201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acoustic sleepiness detection: framework and validation of a speech-adapted pattern recognition approach.
    Krajewski J; Batliner A; Golz M
    Behav Res Methods; 2009 Aug; 41(3):795-804. PubMed ID: 19587194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mandarin Electrolaryngeal Speech Recognition Based on WaveNet-CTC.
    Qian Z; Wang L; Zhang S; Liu C; Niu H
    J Speech Lang Hear Res; 2019 Jul; 62(7):2203-2212. PubMed ID: 31200617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of automatic and human speech recognition in null grammar.
    Juneja A
    J Acoust Soc Am; 2012 Mar; 131(3):EL256-61. PubMed ID: 22423817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.
    Rader T; Adel Y; Fastl H; Baumann U
    Ear Hear; 2015; 36(6):e314-25. PubMed ID: 25989069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic, computer-based speech assessment on edentulous patients with and without complete dentures - preliminary results.
    Stelzle F; Ugrinovic B; Knipfer C; Bocklet T; Nöth E; Schuster M; Eitner S; Seiss M; Nkenke E
    J Oral Rehabil; 2010 Mar; 37(3):209-16. PubMed ID: 20085615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Web System Prototype based on speech recognition to construct medical reports in Brazilian Portuguese.
    de Toledo TF; Lee HD; Spolaôr N; Rodrigues Coy CS; Wu FC
    Int J Med Inform; 2019 Jan; 121():39-52. PubMed ID: 30545488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple error classification system for understanding sources of error in automatic speech recognition and human transcription.
    Zafar A; Mamlin B; Perkins S; Belsito AM; Overhage JM; McDonald CJ
    Int J Med Inform; 2004 Sep; 73(9-10):719-30. PubMed ID: 15325329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of speaking style and implications for speech recognition.
    Shinozaki T; Ostendorf M; Atlas L
    J Acoust Soc Am; 2009 Sep; 126(3):1500-10. PubMed ID: 19739763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A systematic comparison of contemporary automatic speech recognition engines for conversational clinical speech.
    Kodish-Wachs J; Agassi E; Kenny P; Overhage JM
    AMIA Annu Symp Proc; 2018; 2018():683-689. PubMed ID: 30815110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separable spectro-temporal Gabor filter bank features: Reducing the complexity of robust features for automatic speech recognition.
    Schädler MR; Kollmeier B
    J Acoust Soc Am; 2015 Apr; 137(4):2047-59. PubMed ID: 25920855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting Intelligibility Gains in Dysarthria Through Automated Speech Feature Analysis.
    Fletcher AR; Wisler AA; McAuliffe MJ; Lansford KL; Liss JM
    J Speech Lang Hear Res; 2017 Nov; 60(11):3058-3068. PubMed ID: 29075755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Racial disparities in automated speech recognition.
    Koenecke A; Nam A; Lake E; Nudell J; Quartey M; Mengesha Z; Toups C; Rickford JR; Jurafsky D; Goel S
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7684-7689. PubMed ID: 32205437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A multi-views multi-learners approach towards dysarthric speech recognition using multi-nets artificial neural networks.
    Shahamiri SR; Salim SS
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1053-63. PubMed ID: 24760940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of Documentation Speed Using Web-Based Medical Speech Recognition Technology: Randomized Controlled Trial.
    Vogel M; Kaisers W; Wassmuth R; Mayatepek E
    J Med Internet Res; 2015 Nov; 17(11):e247. PubMed ID: 26531850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Severity-based adaptation with limited data for ASR to aid dysarthric speakers.
    Mustafa MB; Salim SS; Mohamed N; Al-Qatab B; Siong CE
    PLoS One; 2014; 9(1):e86285. PubMed ID: 24466004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Usage, performance, and satisfaction outcomes for experienced users of automatic speech recognition.
    Koester HH
    J Rehabil Res Dev; 2004 Sep; 41(5):739-54. PubMed ID: 15558404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic speech recognition in cocktail-party situations: a specific training for separated speech.
    Marti A; Cobos M; Lopez JJ
    J Acoust Soc Am; 2012 Feb; 131(2):1529-35. PubMed ID: 22352522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.