These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 27176561)

  • 21. A new model for the standardization of experimental burn wounds.
    Venter NG; Monte-Alto-Costa A; Marques RG
    Burns; 2015 May; 41(3):542-7. PubMed ID: 25440857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of laser micropore porcine acellular dermal matrix for skin graft: an experimental study.
    Chai JK; Liang LM; Yang HM; Feng R; Yin HN; Li FY; Sheng ZY
    Burns; 2007 Sep; 33(6):719-25. PubMed ID: 17707784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence-based injury prediction data for the water temperature and duration of exposure for clinically relevant deep dermal scald injuries.
    Andrews CJ; Kimble RM; Kempf M; Cuttle L
    Wound Repair Regen; 2017 Sep; 25(5):792-804. PubMed ID: 28857337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Examination of the Early Diagnostic Applicability of Active Dynamic Thermography for Burn Wound Depth Assessment and Concept Analysis.
    Prindeze NJ; Fathi P; Mino MJ; Mauskar NA; Travis TE; Paul DW; Moffatt LT; Shupp JW
    J Burn Care Res; 2015; 36(6):626-35. PubMed ID: 25412050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a porcine deep partial thickness burn model.
    Gaines C; Poranki D; Du W; Clark RA; Van Dyke M
    Burns; 2013 Mar; 39(2):311-9. PubMed ID: 22981797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling Burn Progression Using Comb Burns: The Impact of Thermal Contact Duration on Model Outcomes.
    Smith RD; Carney BC; Garg G; Monger KW; Prindeze NJ; Shupp JW; Moffatt LT
    J Surg Res; 2021 Apr; 260():155-162. PubMed ID: 33340869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [An experimental investigation of deep burn by constant low heat].
    Ma W; Huo C; Tian S; Cao P
    Zhonghua Shao Shang Za Zhi; 2002 Apr; 18(2):99-101. PubMed ID: 12515656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developing a Simple Burn Model in Rats of Different Ages.
    Zheng B; Shen C; Sun J; Guo W; Jin Y; Niu Y
    J Burn Care Res; 2019 Aug; 40(5):639-647. PubMed ID: 31111883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tissue-engineered skin containing mesenchymal stem cells improves burn wounds.
    Liu P; Deng Z; Han S; Liu T; Wen N; Lu W; Geng X; Huang S; Jin Y
    Artif Organs; 2008 Dec; 32(12):925-31. PubMed ID: 19133020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of autophagy and apoptosis in wound tissue of deep second-degree burn in rats.
    Xiao M; Li L; Li C; Zhang P; Hu Q; Ma L; Zhang H
    Acad Emerg Med; 2014 Apr; 21(4):383-91. PubMed ID: 24730400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of the evidence for threshold of burn injury.
    Martin NA; Falder S
    Burns; 2017 Dec; 43(8):1624-1639. PubMed ID: 28536038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Commercially available topical platelet-derived growth factor as a novel agent to accelerate burn-related wound healing.
    Travis TE; Mauskar NA; Mino MJ; Prindeze N; Moffatt LT; Fidler PE; Jordan MH; Shupp JW
    J Burn Care Res; 2014; 35(5):e321-9. PubMed ID: 24476989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical coherence tomography provides an optical biopsy of burn wounds in children-a pilot study.
    Lindert J; Tafazzoli-Lari K; Tüshaus L; Larsen B; Bacia A; Bouteleux M; Adler T; Dalicho V; Vasileidos V; Kisch T; Stang F; Welzel J; Wünsch L
    J Biomed Opt; 2018 Oct; 23(10):1-6. PubMed ID: 30324791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modification and utility of a rat burn wound model.
    Hu X; Wang X; Hong X; Fan H; Zhang X; Chen A; Wang G; Jin J; Xia Z
    Wound Repair Regen; 2020 Nov; 28(6):797-811. PubMed ID: 32770808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Noninvasive Techniques for the Determination of Burn Severity in Real Time.
    Burmeister DM; Cerna C; Becerra SC; Sloan M; Wilmink G; Christy RJ
    J Burn Care Res; 2017; 38(1):e180-e191. PubMed ID: 27355653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of burn depth with noncontact ultrasonography.
    Iraniha S; Cinat ME; VanderKam VM; Boyko A; Lee D; Jones J; Achauer BM
    J Burn Care Rehabil; 2000; 21(4):333-8. PubMed ID: 10935815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discordance between histologic and visual assessment of tissue viability in excised burn wound tissue.
    Karim AS; Yan A; Ocotl E; Bennett DD; Wang Z; Kendziorski C; Gibson ALF
    Wound Repair Regen; 2019 Mar; 27(2):150-161. PubMed ID: 30585657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Modified Method To Create A Porcine Deep Dermal Burn Model.
    Seswandhana R; Anzhari S; Ghozali A; Dachlan I; Wirohadidjojo YW; Aryandono T
    Ann Burns Fire Disasters; 2021 Jun; 34(2):187-191. PubMed ID: 34584509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forward-looking infrared imaging predicts ultimate burn depth in a porcine vertical injury progression model.
    Miccio J; Parikh S; Marinaro X; Prasad A; McClain S; Singer AJ; Clark RA
    Burns; 2016 Mar; 42(2):397-404. PubMed ID: 26775220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of hyperspectral imaging as a modern aid in clinical assessment of burn wounds of the upper extremity.
    Promny D; Aich J; Püski T; Marti Edo A; Reichert B; Billner M
    Burns; 2022 May; 48(3):615-622. PubMed ID: 34857418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.