These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 27176996)

  • 1. Using an artificial neural network approach to estimate surface-layer optical turbulence at Mauna Loa, Hawaii.
    Wang Y; Basu S
    Opt Lett; 2016 May; 41(10):2334-7. PubMed ID: 27176996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending a surface-layer Cn2 model for strongly stratified conditions utilizing a numerically generated turbulence dataset.
    He P; Basu S
    Opt Express; 2016 May; 24(9):9574-82. PubMed ID: 27137570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar spectral irradiance and atmospheric transmission at Mauna Loa Observatory.
    Shaw GE
    Appl Opt; 1982 Jun; 21(11):2006-11. PubMed ID: 20389986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volcanically related secular trends in atmospheric transmission at mauna loa observatory, hawaii.
    Mendonca BG; Hanson KJ; Deluisi JJ
    Science; 1978 Nov; 202(4367):513-5. PubMed ID: 17813489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple approach for estimating the refractive index structure parameter (Cn²) profile in the atmosphere.
    Basu S
    Opt Lett; 2015 Sep; 40(17):4130-3. PubMed ID: 26368729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of surface reflectance on skylight polarization measurements at the Mauna Loa Observatory.
    Dahlberg AR; Pust NJ; Shaw JA
    Opt Express; 2011 Aug; 19(17):16008-21. PubMed ID: 21934965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the surface layer refractive index structure constant over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale atmospheric model.
    Qing C; Wu X; Huang H; Tian Q; Zhu W; Rao R; Li X
    Opt Express; 2016 Sep; 24(18):20424-36. PubMed ID: 27607648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entanglement of near-surface optical turbulence to atmospheric boundary layer dynamics and particulate concentration: implications for optical wireless communication systems.
    Anand N; Sunilkumar K; Satheesh SK; Krishna Moorthy K
    Appl Opt; 2020 Feb; 59(5):1471-1483. PubMed ID: 32225406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Calibration of Atmospheric Oxidized Mercury Measurements.
    Lyman S; Jones C; O'Neil T; Allen T; Miller M; Gustin MS; Pierce AM; Luke W; Ren X; Kelley P
    Environ Sci Technol; 2016 Dec; 50(23):12921-12927. PubMed ID: 27934266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory.
    Vasilyev OB; Leyva A; Muhila A; Valdes M; Peralta R; Kovalenko AP; Welch RM; Berendes TA; Isakov VY; Kulikovskiy YP; Sokolov SS; Strepanov NN; Gulidov SS; von Hoyningen-Huene W
    Appl Opt; 1995 Jul; 34(21):4426-36. PubMed ID: 21052277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple method to estimate the optical turbulence over snow and ice.
    Yang Q; Wu X; Wu S; Han Y; Su C; Zhang S; Qing C
    J Opt Soc Am A Opt Image Sci Vis; 2021 Oct; 38(10):1483-1488. PubMed ID: 34612978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking near-surface atmospheric conditions using an infrasound network.
    Marcillo O; Johnson JB
    J Acoust Soc Am; 2010 Jul; 128(1):EL14-9. PubMed ID: 20649183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: I. Quantitative deductions from records at Mauna Loa Observatory and at the South Pole.
    Ekdahl CA; Keeling CK
    Brookhaven Symp Biol; 1973 Aug; (30):51-85. PubMed ID: 4807347
    [No Abstract]   [Full Text] [Related]  

  • 14. Path-averaged Cn2 estimation using a laser-and-corner-cube system.
    Cole WP; Marciniak MA
    Appl Opt; 2009 Jul; 48(21):4256-62. PubMed ID: 19623240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating and measurement of atmospheric optical turbulence according to balloon-borne radiosonde for three sites in China.
    Bi C; Qian X; Liu Q; Zhu W; Li X; Luo T; Wu X; Qing C
    J Opt Soc Am A Opt Image Sci Vis; 2020 Nov; 37(11):1785-1794. PubMed ID: 33175755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-learning informed macro-meteorological models for the near-maritime environment.
    Jellen C; Oakley M; Nelson C; Burkhardt J; Brownell C
    Appl Opt; 2021 Apr; 60(11):2938-2951. PubMed ID: 33983186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive niche-genetic algorithm based on backpropagation neural network for atmospheric turbulence forecasting.
    Su C; Wu X; Luo T; Wu S; Qing C
    Appl Opt; 2020 Apr; 59(12):3699-3705. PubMed ID: 32400493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Submillimeter fourier-transform spectrometer measurements of atmospheric opacity above mauna kea.
    Serabyn E; Weisstein EW; Lis DC; Pardo JR
    Appl Opt; 1998 Apr; 37(12):2185-98. PubMed ID: 18273141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asian dust: seasonal transport to the hawaiian islands.
    Parrington JR; Zoller WH; Aras NK
    Science; 1983 Apr; 220(4593):195-7. PubMed ID: 17795828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing the Kantorovich metric for the validation of optical turbulence predictions.
    Wang Y; Basu S
    Opt Lett; 2016 Sep; 41(17):4008-11. PubMed ID: 27607959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.