BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27177716)

  • 1. A new photocrosslinkable polycaprolactone-based ink for three-dimensional inkjet printing.
    He Y; Tuck CJ; Prina E; Kilsby S; Christie SDR; Edmondson S; Hague RJM; Rose FRAJ; Wildman RD
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1645-1657. PubMed ID: 27177716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds.
    Alemán-Domínguez ME; Giusto E; Ortega Z; Tamaddon M; Benítez AN; Liu C
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):521-528. PubMed ID: 29717804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printing of poly(glycerol sebacate fumarate) gadodiamide-poly(ethylene glycol) diacrylate structures and characterization of mechanical properties for soft tissue applications.
    Ravi P; Wright J; Shiakolas PS; Welch TR
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):664-671. PubMed ID: 30096218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation.
    Gonçalves EM; Oliveira FJ; Silva RF; Neto MA; Fernandes MH; Amaral M; Vallet-Regí M; Vila M
    J Biomed Mater Res B Appl Biomater; 2016 Aug; 104(6):1210-9. PubMed ID: 26089195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration.
    Heo SY; Ko SC; Oh GW; Kim N; Choi IW; Park WS; Jung WK
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1937-1944. PubMed ID: 30508311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V.
    Barui S; Panda AK; Naskar S; Kuppuraj R; Basu S; Basu B
    Biomaterials; 2019 Aug; 213():119212. PubMed ID: 31152931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed polycaprolactone scaffold mixed with β-tricalcium phosphate as a bone regenerative material in rabbit calvarial defects.
    Pae HC; Kang JH; Cha JK; Lee JS; Paik JW; Jung UW; Kim BH; Choi SH
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1254-1263. PubMed ID: 30300967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-step method using air plasma and carbodiimide crosslinking to enhance the biocompatibility of polycaprolactone.
    Sahapaibounkit P; Prasertsung I; Mongkolnavin R; Wong CS; Damrongsakkul S
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1658-1666. PubMed ID: 27177842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocurable poly(ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs.
    Acosta-Vélez GF; Zhu TZ; Linsley CS; Wu BM
    Int J Pharm; 2018 Jul; 546(1-2):145-153. PubMed ID: 29705105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone.
    Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG
    Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing of tablets using inkjet with UV photoinitiation.
    Clark EA; Alexander MR; Irvine DJ; Roberts CJ; Wallace MJ; Sharpe S; Yoo J; Hague RJM; Tuck CJ; Wildman RD
    Int J Pharm; 2017 Aug; 529(1-2):523-530. PubMed ID: 28673860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Mechanically Enhanced Polycaprolactone Composites by a Functionalized Titanate Nanofiller for Melt Electrowriting in 3D Printing.
    Pang L; Paxton NC; Ren J; Liu F; Zhan H; Woodruff MA; Bo A; Gu Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47993-48006. PubMed ID: 33044824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printing inks of electroactive polymer PEDOT:PSS: The study of biocompatibility, stability, and electrical properties.
    Stříteský S; Marková A; Víteček J; Šafaříková E; Hrabal M; Kubáč L; Kubala L; Weiter M; Vala M
    J Biomed Mater Res A; 2018 Apr; 106(4):1121-1128. PubMed ID: 29274101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Application of Three-Dimensional Printing in Animal Model of Augmentation Rhinoplasty.
    Kim YS; Shin YS; Park DY; Choi JW; Park JK; Kim DH; Kim CH; Park SA
    Ann Biomed Eng; 2015 Sep; 43(9):2153-62. PubMed ID: 25636599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineering.
    Shamirzaei Jeshvaghani E; Ghasemi-Mobarakeh L; Mansurnezhad R; Ajalloueian F; Kharaziha M; Dinari M; Sami Jokandan M; Chronakis IS
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2371-2383. PubMed ID: 29168916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface patterning of a novel PEG-functionalized poly-l-lactide polymer to improve its biocompatibility: Applications to bioresorbable vascular stents.
    Pacharra S; Ortiz R; McMahon S; Wang W; Viebahn R; Salber J; Quintana I
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):624-634. PubMed ID: 30091510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of scaffold design on 3D printed cell constructs.
    Souness A; Zamboni F; Walker GM; Collins MN
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):533-545. PubMed ID: 28194931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully Inkjet Printing Preparation of a Carbon Dots Multichannel Microfluidic Paper-Based Sensor and Its Application in Food Additive Detection.
    Deng Y; Li Q; Zhou Y; Qian J
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57084-57091. PubMed ID: 34797049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of smart antibacterial PCL-xFe
    Pai B G; Kulkarni AV; Jain S
    J Biomed Mater Res B Appl Biomater; 2017 May; 105(4):795-804. PubMed ID: 26762566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An effective thermal therapy against cancer using an E-jet 3D-printing method to prepare implantable magnetocaloric mats.
    Yang Y; Tong C; Zhong J; Huang R; Tan W; Tan Z
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1827-1841. PubMed ID: 28914992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.