These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27178230)

  • 1. Functional analysis of an feoB mutant in Clostridium perfringens strain 13.
    Awad MM; Cheung JK; Tan JE; McEwan AG; Lyras D; Rood JI
    Anaerobe; 2016 Oct; 41():10-17. PubMed ID: 27178230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CodY is a global regulator of virulence-associated properties for Clostridium perfringens type D strain CN3718.
    Li J; Ma M; Sarker MR; McClane BA
    mBio; 2013 Oct; 4(5):e00770-13. PubMed ID: 24105766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Bradyrhizobium japonicum Ferrous Iron Transporter FeoAB Is Required for Ferric Iron Utilization in Free Living Aerobic Cells and for Symbiosis.
    Sankari S; O'Brian MR
    J Biol Chem; 2016 Jul; 291(30):15653-62. PubMed ID: 27288412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter.
    Velayudhan J; Hughes NJ; McColm AA; Bagshaw J; Clayton CL; Andrews SC; Kelly DJ
    Mol Microbiol; 2000 Jul; 37(2):274-86. PubMed ID: 10931324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial ferrous iron transport: the Feo system.
    Lau CK; Krewulak KD; Vogel HJ
    FEMS Microbiol Rev; 2016 Mar; 40(2):273-98. PubMed ID: 26684538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferric Uptake Regulator Fur Control of Putative Iron Acquisition Systems in Clostridium difficile.
    Ho TD; Ellermeier CD
    J Bacteriol; 2015 Sep; 197(18):2930-40. PubMed ID: 26148711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Toxin Production in Clostridium perfringens.
    Ohtani K; Shimizu T
    Toxins (Basel); 2016 Jul; 8(7):. PubMed ID: 27399773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival.
    Naikare H; Palyada K; Panciera R; Marlow D; Stintzi A
    Infect Immun; 2006 Oct; 74(10):5433-44. PubMed ID: 16988218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Redundancy in Iron and Manganese Transport in the Metabolically Versatile Bacterium Rhodopseudomonas palustris TIE-1.
    Singh R; Ranaivoarisoa TO; Gupta D; Bai W; Bose A
    Appl Environ Microbiol; 2020 Aug; 86(16):. PubMed ID: 32503905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The NEAT Domain-Containing Proteins of Clostridium perfringens Bind Heme.
    Choo JM; Cheung JK; Wisniewski JA; Steer DL; Bulach DM; Hiscox TJ; Chakravorty A; Smith AI; Gell DA; Rood JI; Awad MM
    PLoS One; 2016; 11(9):e0162981. PubMed ID: 27637108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Component and functional mechanism of the ferrous iron acquisition system in gram-negative bacteria - A review].
    Feng Y; Liu M; Cheng A
    Wei Sheng Wu Xue Bao; 2016 Jul; 56(7):1061-9. PubMed ID: 29732873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of RNase Y in Clostridium perfringens mRNA Decay and Processing.
    Obana N; Nakamura K; Nomura N
    J Bacteriol; 2017 Jan; 199(2):. PubMed ID: 27821608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Citrate-mediated iron uptake in Pseudomonas aeruginosa: involvement of the citrate-inducible FecA receptor and the FeoB ferrous iron transporter.
    Marshall B; Stintzi A; Gilmour C; Meyer JM; Poole K
    Microbiology (Reading); 2009 Jan; 155(Pt 1):305-315. PubMed ID: 19118371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Holin-Dependent Secretion of the Large Clostridial Toxin TpeL by Clostridium perfringens.
    Saadat A; Melville SB
    J Bacteriol; 2021 Mar; 203(8):. PubMed ID: 33526612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a two-component signal transduction system that regulates maltose genes in Clostridium perfringens.
    Hiscox TJ; Ohtani K; Shimizu T; Cheung JK; Rood JI
    Anaerobe; 2014 Dec; 30():199-204. PubMed ID: 25152227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the large clostridial toxins is controlled by conserved regulatory mechanisms.
    Carter GP; Larcombe S; Li L; Jayawardena D; Awad MM; Songer JG; Lyras D
    Int J Med Microbiol; 2014 Nov; 304(8):1147-59. PubMed ID: 25190355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fciTABC and feoABI systems contribute to ferric citrate acquisition in Stenotrophomonas maltophilia.
    Liao CH; Lu HF; Huang HH; Chen Y; Li LH; Lin YT; Yang TC
    J Biomed Sci; 2022 Apr; 29(1):26. PubMed ID: 35477574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virulence gene regulation by the agr system in Clostridium perfringens.
    Ohtani K; Yuan Y; Hassan S; Wang R; Wang Y; Shimizu T
    J Bacteriol; 2009 Jun; 191(12):3919-27. PubMed ID: 19363118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Characterization of FeoAB in Iron Acquisition and Pathogenicity in Riemerella anatipestifer.
    Huang M; Wang M; Feng Y; Wang M; Gao Q; Zhu D; Jia R; Chen S; Zhao X; Yang Q; Wu Y; Zhang S; Tian B; Huang J; Ou X; Mao S; Sun D; He Y; Wu Z; Cheng A; Liu M
    Microbiol Spectr; 2023 Aug; 11(4):e0137323. PubMed ID: 37272830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid evolution of a bacterial iron acquisition system.
    Chatterjee A; O'Brian MR
    Mol Microbiol; 2018 Apr; 108(1):90-100. PubMed ID: 29381237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.