These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 27178486)

  • 1. Time to make the doughnuts: Building and shaping seamless tubes.
    Sundaram MV; Cohen JD
    Semin Cell Dev Biol; 2017 Jul; 67():123-131. PubMed ID: 27178486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulators of the secretory pathway have distinct inputs into single-celled branching morphogenesis and seamless tube formation in the Drosophila trachea.
    Bourne CM; Lai DC; Schottenfeld-Roames J
    Dev Biol; 2022 Oct; 490():100-109. PubMed ID: 35870495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tube morphogenesis: making and shaping biological tubes.
    Lubarsky B; Krasnow MA
    Cell; 2003 Jan; 112(1):19-28. PubMed ID: 12526790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tube morphogenesis: closure, but many openings remain.
    Nelson WJ
    Trends Cell Biol; 2003 Dec; 13(12):615-21. PubMed ID: 14624839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whacked and Rab35 polarize dynein-motor-complex-dependent seamless tube growth.
    Schottenfeld-Roames J; Ghabrial AS
    Nat Cell Biol; 2012 Mar; 14(4):386-93. PubMed ID: 22407366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity.
    Rosa JB; Metzstein MM; Ghabrial AS
    PLoS Genet; 2018 Jan; 14(1):e1007146. PubMed ID: 29309404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shaping subcellular tubes through vesicle trafficking: Common and distinct pathways.
    Pradhan R; Urbieta-Ortiz VA; Kumar S; Mathew R; Ríos-Barrera LD
    Semin Cell Dev Biol; 2023 Jan; 133():74-82. PubMed ID: 35365398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic regulation of seamless tube growth.
    Schottenfeld-Roames J; Ghabrial AS
    Nat Cell Biol; 2013 Feb; 15(2):137-9. PubMed ID: 23377027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Making tubes in the Drosophila embryo.
    Myat MM
    Dev Dyn; 2005 Mar; 232(3):617-32. PubMed ID: 15712279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auto-fusion and the shaping of neurons and tubes.
    Soulavie F; Sundaram MV
    Semin Cell Dev Biol; 2016 Dec; 60():136-145. PubMed ID: 27436685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sprouting and anastomosis in the Drosophila trachea and the vertebrate vasculature: Similarities and differences in cell behaviour.
    Kotini MP; Mäe MA; Belting HG; Betsholtz C; Affolter M
    Vascul Pharmacol; 2019 Jan; 112():8-16. PubMed ID: 30423447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix.
    Gill HK; Cohen JD; Ayala-Figueroa J; Forman-Rubinsky R; Poggioli C; Bickard K; Parry JM; Pu P; Hall DH; Sundaram MV
    PLoS Genet; 2016 Aug; 12(8):e1006205. PubMed ID: 27482894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker erm-1.
    Göbel V; Barrett PL; Hall DH; Fleming JT
    Dev Cell; 2004 Jun; 6(6):865-73. PubMed ID: 15177034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensatory branching morphogenesis of stalk cells in the Drosophila trachea.
    Francis D; Ghabrial AS
    Development; 2015 Jun; 142(11):2048-57. PubMed ID: 25977367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity.
    Sundaram MV; Buechner M
    Genetics; 2016 May; 203(1):35-63. PubMed ID: 27183565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From fate to function: the Drosophila trachea and salivary gland as models for tubulogenesis.
    Kerman BE; Cheshire AM; Andrew DJ
    Differentiation; 2006 Sep; 74(7):326-48. PubMed ID: 16916373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel mechanisms of tube-size regulation revealed by the Drosophila trachea.
    Zuo L; Iordanou E; Chandran RR; Jiang L
    Cell Tissue Res; 2013 Nov; 354(2):343-54. PubMed ID: 23824100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A junctional problem of apical proportions: epithelial tube-size control by septate junctions in the Drosophila tracheal system.
    Wu VM; Beitel GJ
    Curr Opin Cell Biol; 2004 Oct; 16(5):493-9. PubMed ID: 15363798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A C. elegans CLIC-like protein required for intracellular tube formation and maintenance.
    Berry KL; Bülow HE; Hall DH; Hobert O
    Science; 2003 Dec; 302(5653):2134-7. PubMed ID: 14684823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tensile trilayered cytoskeletal endotube drives capillary-like lumenogenesis.
    Khan LA; Jafari G; Zhang N; Membreno E; Yan S; Zhang H; Gobel V
    J Cell Biol; 2019 Jul; 218(7):2403-2424. PubMed ID: 31239283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.