These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27178638)

  • 1. Influence of activated-carbon-supported transition metals on the decomposition of polychlorobiphenyls. Part I: Catalytic decomposition and kinetic analysis.
    Sun Y; Tao F; Liu L; Zeng X; Wang W
    Chemosphere; 2016 Sep; 159():659-667. PubMed ID: 27178638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of activated-carbon-supported transition metals on the decomposition of polychlorobiphenyls. Part II: Chemical and physical characterization and mechanistic study.
    Sun Y; Liu L; Oshita K; Zeng X; Wang W; Zhang Y
    Chemosphere; 2016 Sep; 159():668-675. PubMed ID: 27320438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of 2,2',4,4',5,5'-hexachlorobiphenyl with iron supported on an activated carbon from an ion-exchange resin.
    Sun Y; Takaoka M; Takeda N; Wang W; Zeng X; Zhu T
    Chemosphere; 2012 Aug; 88(7):895-902. PubMed ID: 22560977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics on the decomposition of polychlorinated biphenyls with activated carbon-supported iron.
    Sun Y; Takaoka M; Takeda N; Matsumoto T; Oshita K
    Chemosphere; 2006 Oct; 65(2):183-9. PubMed ID: 16630644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dechlorination of polychlorinated biphenyls by iron and its oxides.
    Sun Y; Liu X; Kainuma M; Wang W; Takaoka M; Takeda N
    Chemosphere; 2015 Oct; 137():78-86. PubMed ID: 26011415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and reaction pathway of Aroclor 1254 removal by novel bimetallic catalysts supported on activated carbon.
    Xu J; Liu Y; Tao F; Sun Y
    Sci Total Environ; 2019 Feb; 651(Pt 1):749-755. PubMed ID: 30245430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature decomposition of Aroclor 1254 over AC-supported Ni-Fe bimetallic catalysts: Kinetic and thermodynamic study.
    Liu L; Meng Y; Liang J; Xia D; Sun Y
    Sci Total Environ; 2019 May; 666():591-597. PubMed ID: 30807949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical characteristics of carbonaceous adsorbent for dioxin-like polychlorinated biphenyl adsorption.
    Kawashima A; Katayama M; Matsumoto N; Honda K
    Chemosphere; 2011 Apr; 83(6):823-30. PubMed ID: 21435691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the low-temperature decomposition of Aroclor 1254 over activated carbon-supported bimetallic catalysts obtained with XANES and DFT calculations.
    Liu Y; Diao X; Tao F; Yang C; Wang H; Takaoka M; Sun Y
    J Hazard Mater; 2019 Mar; 366():538-544. PubMed ID: 30572293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic role of palladium and relative reactivity of substituted chlorines during adsorption and treatment of PCBs on reactive activated carbon.
    Choi H; Al-Abed SR; Agarwal S
    Environ Sci Technol; 2009 Oct; 43(19):7510-5. PubMed ID: 19848169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of activated carbon amendment on the accumulation and elimination of PCBs in the earthworm Eisenia fetida.
    Paul P; Ghosh U
    Environ Pollut; 2011 Dec; 159(12):3763-8. PubMed ID: 21840094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodechlorination of dichlorobiphenyls over Ni-Mo/Al2O3 catalysts prepared by spray-drying method.
    Gryglewicz G; Stolarski M; Gryglewicz S; Klijanienko A; Piechocki W; Hoste S; Van Driessche I; Carleer R; Yperman J
    Chemosphere; 2006 Jan; 62(1):135-41. PubMed ID: 15949837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects and mechanism of catalytic decomposition of ozone by activated carbon].
    Liu HL; Zhang ZY; Zhang ZM; Jiao RY; Wang RJ
    Huan Jing Ke Xue; 2012 Oct; 33(10):3662-6. PubMed ID: 23234003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static and dynamic adsorption studies of PolyChloroBiphenyls (PCBs) over activated carbons.
    Perrard A; Descorme C
    Chemosphere; 2016 Feb; 145():528-34. PubMed ID: 26702556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon.
    Vasilyeva GK; Strijakova ER; Nikolaeva SN; Lebedev AT; Shea PJ
    Environ Pollut; 2010 Mar; 158(3):770-7. PubMed ID: 19897290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous adsorption and degradation of γ-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support.
    Chang C; Lian F; Zhu L
    Environ Pollut; 2011 Oct; 159(10):2507-14. PubMed ID: 21763039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime.
    Denyes MJ; Rutter A; Zeeb BA
    Environ Pollut; 2013 Nov; 182():201-8. PubMed ID: 23933124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts.
    Aresta M; Dibenedetto A; Fragale C; Giannoccaro P; Pastore C; Zammiello D; Ferragina C
    Chemosphere; 2008 Jan; 70(6):1052-8. PubMed ID: 17850843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism.
    Choi H; Al-Abed SR
    J Hazard Mater; 2009 Jun; 165(1-3):860-6. PubMed ID: 19059706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content.
    Huang S; Bao J; Shan M; Qin H; Wang H; Yu X; Chen J; Xu Q
    Chemosphere; 2018 Nov; 211():120-127. PubMed ID: 30071423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.