BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27178788)

  • 1. Non-productive adsorption of bacterial β-glucosidases on lignins is electrostatically modulated and depends on the presence of fibronection type III-like domain.
    da Silva VM; de Souza AS; Negrão DR; Polikarpov I; Squina FM; de Oliveira Neto M; Muniz JR; Garcia W
    Enzyme Microb Technol; 2016 Jun; 87-88():1-8. PubMed ID: 27178788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligomeric state and structural stability of two hyperthermophilic β-glucosidases from Thermotoga petrophila.
    Colussi F; da Silva VM; Miller I; Cota J; de Oliveira LC; de Oliveira Neto M; Squina FM; Garcia W
    Amino Acids; 2015 May; 47(5):937-48. PubMed ID: 25637167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding.
    Rahikainen JL; Evans JD; Mikander S; Kalliola A; Puranen T; Tamminen T; Marjamaa K; Kruus K
    Enzyme Microb Technol; 2013 Oct; 53(5):315-21. PubMed ID: 24034430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between Cellulolytic Enzymes with Native, Autohydrolysis, and Technical Lignins and the Effect of a Polysorbate Amphiphile in Reducing Nonproductive Binding.
    Fritz C; Ferrer A; Salas C; Jameel H; Rojas OJ
    Biomacromolecules; 2015 Dec; 16(12):3878-88. PubMed ID: 26565921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.
    Kumar R; Singh S; Singh OV
    J Ind Microbiol Biotechnol; 2008 May; 35(5):377-391. PubMed ID: 18338189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic studies of the interactions between a model polyphenol compound and microbial β-glucosidases.
    da Silva VM; Sato JAP; Araujo JN; Squina FM; Muniz JRC; Riske KA; Garcia W
    PLoS One; 2017; 12(7):e0181629. PubMed ID: 28727856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods.
    Ko JK; Ximenes E; Kim Y; Ladisch MR
    Biotechnol Bioeng; 2015 Mar; 112(3):447-56. PubMed ID: 25116138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass.
    Shang Y; Su R; Huang R; Yang Y; Qi W; Li Q; He Z
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5765-74. PubMed ID: 24752845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Penicillium cellulases for total hydrolysis of lignocellulosics.
    Marjamaa K; Toth K; Bromann PA; Szakacs G; Kruus K
    Enzyme Microb Technol; 2013 May; 52(6-7):358-69. PubMed ID: 23608505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the hydrophobic residues of a GH11 xylanase impacts its adsorption onto lignin and its thermostability.
    Rakotoarivonina H; Hermant B; Aubry N; Rémond C
    Enzyme Microb Technol; 2015 Dec; 81():47-55. PubMed ID: 26453471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignin-derived inhibition of monocomponent cellulases and a xylanase in the hydrolysis of lignocellulosics.
    Kellock M; Rahikainen J; Marjamaa K; Kruus K
    Bioresour Technol; 2017 May; 232():183-191. PubMed ID: 28231536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects.
    Li X; Zheng Y
    Biotechnol Adv; 2017 Jul; 35(4):466-489. PubMed ID: 28351654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pre-addition of "blocking" proteins decreases subsequent cellulase adsorption to lignin and enhances cellulose hydrolysis.
    Liu J; Wu J; Lu Y; Zhang H; Hua Q; Bi R; Rojas O; Renneckar S; Fan S; Xiao Z; Saddler J
    Bioresour Technol; 2023 Jan; 367():128276. PubMed ID: 36347476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption behavior of two glucanases on three lignins and the effect by adding sulfonated lignin.
    Zhang Y; Jiang X; Wan S; Wu W; Wu S; Jin Y
    J Biotechnol; 2020 Nov; 323():1-8. PubMed ID: 32693090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bi-functional cellulases complexes displayed on the cell surface of Corynebacterium glutamicum increase hydrolysis of lignocelluloses at elevated temperature.
    Kim SJ; Hyeon JE; Jeon SD; Choi GW; Han SO
    Enzyme Microb Technol; 2014 Nov; 66():67-73. PubMed ID: 25248702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the role of long-range and short-range forces in the non-productive adsorption between lignin and cellulases at different temperatures.
    Xu L; Wang J; Zhang A; Pang Y; Yang D; Lou H; Qiu X
    J Colloid Interface Sci; 2023 Oct; 647():318-330. PubMed ID: 37262994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass.
    Yu Z; Gwak KS; Treasure T; Jameel H; Chang HM; Park S
    ChemSusChem; 2014 Jul; 7(7):1942-50. PubMed ID: 24903047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose.
    Liu H; Zhu JY; Fu SY
    J Agric Food Chem; 2010 Jun; 58(12):7233-8. PubMed ID: 20509690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin-Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass.
    Dos Santos AC; Ximenes E; Kim Y; Ladisch MR
    Trends Biotechnol; 2019 May; 37(5):518-531. PubMed ID: 30477739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving enzymatic efficiency of β-glucosidases in cellulase system by altering its binding behavior to the insoluble substrate during bioconversion of lignocellulose.
    Lu X; Li X; Zhao J
    Bioresour Technol; 2024 Jan; 391(Pt A):129974. PubMed ID: 37939741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.